Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024662528> ?p ?o ?g. }
- W3024662528 endingPage "113545" @default.
- W3024662528 startingPage "113545" @default.
- W3024662528 abstract "In modern manufacturing systems, a flexible job-shop schedule problem (FJSP) with random machine breakdown has been widely studied. Two objectives, namely makespan and robustness, were simultaneously considered in this study. Maximizing the workload and float time of each operation and the machine breakdowns, one surrogate measure named RMc was developed via an extreme learning machine (ELM) to evaluate robustness. Specifically, this measure determines the impact of float time on the robustness by the probability of machine breakdown and the location of float time. Simultaneously, the impact was automatically adjusted by the ELM. Then, a method combining an improved version of nondominated sorting genetic algorithm II and RMc was proposed to address the bi-objective FJSP. Computational results on the benchmarks show that RMc accurately evaluates the robustness of the schedules with a small amount of computation cost." @default.
- W3024662528 created "2020-05-21" @default.
- W3024662528 creator A5016077668 @default.
- W3024662528 creator A5045012663 @default.
- W3024662528 creator A5057874514 @default.
- W3024662528 creator A5076579785 @default.
- W3024662528 date "2020-11-01" @default.
- W3024662528 modified "2023-10-14" @default.
- W3024662528 title "Robust scheduling based on extreme learning machine for bi-objective flexible job-shop problems with machine breakdowns" @default.
- W3024662528 cites W1966157871 @default.
- W3024662528 cites W1967857375 @default.
- W3024662528 cites W1971469819 @default.
- W3024662528 cites W1974771108 @default.
- W3024662528 cites W1978254750 @default.
- W3024662528 cites W2002516907 @default.
- W3024662528 cites W2015593788 @default.
- W3024662528 cites W2017972746 @default.
- W3024662528 cites W2025389484 @default.
- W3024662528 cites W2037678563 @default.
- W3024662528 cites W2043492144 @default.
- W3024662528 cites W2045502230 @default.
- W3024662528 cites W2046437335 @default.
- W3024662528 cites W2047080695 @default.
- W3024662528 cites W2059868770 @default.
- W3024662528 cites W2064661781 @default.
- W3024662528 cites W2070389897 @default.
- W3024662528 cites W2072514160 @default.
- W3024662528 cites W2072669087 @default.
- W3024662528 cites W2076200283 @default.
- W3024662528 cites W2077344880 @default.
- W3024662528 cites W2081990930 @default.
- W3024662528 cites W2086796343 @default.
- W3024662528 cites W2088298082 @default.
- W3024662528 cites W2094549502 @default.
- W3024662528 cites W2105898271 @default.
- W3024662528 cites W2111072639 @default.
- W3024662528 cites W2111525589 @default.
- W3024662528 cites W2131798650 @default.
- W3024662528 cites W2140224582 @default.
- W3024662528 cites W2154429979 @default.
- W3024662528 cites W2160604444 @default.
- W3024662528 cites W2260057416 @default.
- W3024662528 cites W2308426365 @default.
- W3024662528 cites W2491052542 @default.
- W3024662528 cites W2504779171 @default.
- W3024662528 cites W2526876274 @default.
- W3024662528 cites W2605494923 @default.
- W3024662528 cites W2685121201 @default.
- W3024662528 cites W2904360917 @default.
- W3024662528 cites W620137677 @default.
- W3024662528 cites W641032154 @default.
- W3024662528 doi "https://doi.org/10.1016/j.eswa.2020.113545" @default.
- W3024662528 hasPublicationYear "2020" @default.
- W3024662528 type Work @default.
- W3024662528 sameAs 3024662528 @default.
- W3024662528 citedByCount "33" @default.
- W3024662528 countsByYear W30246625282020 @default.
- W3024662528 countsByYear W30246625282021 @default.
- W3024662528 countsByYear W30246625282022 @default.
- W3024662528 countsByYear W30246625282023 @default.
- W3024662528 crossrefType "journal-article" @default.
- W3024662528 hasAuthorship W3024662528A5016077668 @default.
- W3024662528 hasAuthorship W3024662528A5045012663 @default.
- W3024662528 hasAuthorship W3024662528A5057874514 @default.
- W3024662528 hasAuthorship W3024662528A5076579785 @default.
- W3024662528 hasConcept C104317684 @default.
- W3024662528 hasConcept C111919701 @default.
- W3024662528 hasConcept C11413529 @default.
- W3024662528 hasConcept C119857082 @default.
- W3024662528 hasConcept C126255220 @default.
- W3024662528 hasConcept C154945302 @default.
- W3024662528 hasConcept C185592680 @default.
- W3024662528 hasConcept C206729178 @default.
- W3024662528 hasConcept C2778047078 @default.
- W3024662528 hasConcept C2778476105 @default.
- W3024662528 hasConcept C2780150128 @default.
- W3024662528 hasConcept C33923547 @default.
- W3024662528 hasConcept C41008148 @default.
- W3024662528 hasConcept C45374587 @default.
- W3024662528 hasConcept C50644808 @default.
- W3024662528 hasConcept C55416958 @default.
- W3024662528 hasConcept C55493867 @default.
- W3024662528 hasConcept C63479239 @default.
- W3024662528 hasConcept C68387754 @default.
- W3024662528 hasConceptScore W3024662528C104317684 @default.
- W3024662528 hasConceptScore W3024662528C111919701 @default.
- W3024662528 hasConceptScore W3024662528C11413529 @default.
- W3024662528 hasConceptScore W3024662528C119857082 @default.
- W3024662528 hasConceptScore W3024662528C126255220 @default.
- W3024662528 hasConceptScore W3024662528C154945302 @default.
- W3024662528 hasConceptScore W3024662528C185592680 @default.
- W3024662528 hasConceptScore W3024662528C206729178 @default.
- W3024662528 hasConceptScore W3024662528C2778047078 @default.
- W3024662528 hasConceptScore W3024662528C2778476105 @default.
- W3024662528 hasConceptScore W3024662528C2780150128 @default.
- W3024662528 hasConceptScore W3024662528C33923547 @default.
- W3024662528 hasConceptScore W3024662528C41008148 @default.
- W3024662528 hasConceptScore W3024662528C45374587 @default.