Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024662599> ?p ?o ?g. }
- W3024662599 endingPage "539" @default.
- W3024662599 startingPage "523" @default.
- W3024662599 abstract "Highlights SWAT can adequately simulate runoff, soil moisture, cotton and peanut yields, and nitrate at field scale. Muskingum routing and adjusting DIS_STREAM are important to simulate fields as watersheds rather than HRUs. Crop yield calibration is critical for improving SWAT model robustness in nutrient transport simulations and for building stakeholder trust. SWAT can quantify the impacts of different management scenarios at the field scale. Abstract. Multi-variable calibration of a field-scale Soil and Water Assessment (SWAT) model is critical for understanding the true impacts of irrigation and nutrient best management practices (BMPs) on hydrology, water quality, and agricultural productivity and for building stakeholder trust for eventual BMP implementation at the watershed scale. This study evaluated the ability of SWAT to simulate runoff, soil moisture, cotton and peanut yields, and nitrate in conventionally tilled and strip-tilled plots while also evaluating the differences in hydrological and nutrient simulation parameters for the two tillage practices. Modeling results showed that SWAT adequately simulated runoff, soil moisture, cotton and peanut yields, and nitrate at the field scale and that calibrated values for the curve number of operation (CNOP) were different for the conventionally tilled and strip-tilled plots and critical to runoff calibration. It was also important to change the routing method from variable storage to Muskingum and to adjust DIS_STREAM for runoff simulation if the field was to be simulated as a watershed rather than as an HRU. Sequential calibration of surface runoff, soil moisture, crop yield, and nitrate showed that crop yield can be an important consideration for improving SWAT model robustness in nutrient transport simulations. Soil moisture calibration did not have a significant effect on runoff simulations. Evaluation of the impacts of different management scenarios showed that soil moisture sensor-based irrigation, cover crop, and strip tillage had the highest potential for reducing nutrient loss and conserving water while maintaining agricultural productivity in southern Georgia. This study also demonstrated to stakeholders that the SWAT model can successfully quantify the impacts of different management scenarios on their farm fields. Keywords: Agricultural BMPs, Field-scale SWAT, Multi-variable calibration, SWAT, SWAT-CUP." @default.
- W3024662599 created "2020-05-21" @default.
- W3024662599 creator A5008213588 @default.
- W3024662599 creator A5016124948 @default.
- W3024662599 creator A5021471077 @default.
- W3024662599 creator A5030011309 @default.
- W3024662599 creator A5048533950 @default.
- W3024662599 creator A5089960072 @default.
- W3024662599 date "2020-01-01" @default.
- W3024662599 modified "2023-10-16" @default.
- W3024662599 title "Multi-Variable Sensitivity Analysis, Calibration, and Validation of a Field-Scale SWAT Model: Building Stakeholder Trust in Hydrologic and Water Quality Modeling" @default.
- W3024662599 cites W1542704648 @default.
- W3024662599 cites W1582509600 @default.
- W3024662599 cites W1638764946 @default.
- W3024662599 cites W1781559127 @default.
- W3024662599 cites W1831164590 @default.
- W3024662599 cites W1887863118 @default.
- W3024662599 cites W1915781891 @default.
- W3024662599 cites W1983724666 @default.
- W3024662599 cites W2011168601 @default.
- W3024662599 cites W2014458217 @default.
- W3024662599 cites W2019022785 @default.
- W3024662599 cites W2026603433 @default.
- W3024662599 cites W2035370112 @default.
- W3024662599 cites W2043374137 @default.
- W3024662599 cites W2048566664 @default.
- W3024662599 cites W2056769563 @default.
- W3024662599 cites W2059646894 @default.
- W3024662599 cites W2060776638 @default.
- W3024662599 cites W2069822216 @default.
- W3024662599 cites W2071098498 @default.
- W3024662599 cites W2080591068 @default.
- W3024662599 cites W2084749584 @default.
- W3024662599 cites W2085613228 @default.
- W3024662599 cites W2141988801 @default.
- W3024662599 cites W2146577723 @default.
- W3024662599 cites W2152977202 @default.
- W3024662599 cites W2153096438 @default.
- W3024662599 cites W2167097803 @default.
- W3024662599 cites W2180146279 @default.
- W3024662599 cites W2186568603 @default.
- W3024662599 cites W2231363614 @default.
- W3024662599 cites W2250954701 @default.
- W3024662599 cites W2273775458 @default.
- W3024662599 cites W2280203836 @default.
- W3024662599 cites W2303514816 @default.
- W3024662599 cites W2328399833 @default.
- W3024662599 cites W2337649437 @default.
- W3024662599 cites W2346880358 @default.
- W3024662599 cites W2490497214 @default.
- W3024662599 cites W2529819845 @default.
- W3024662599 cites W2734377592 @default.
- W3024662599 cites W2757435271 @default.
- W3024662599 cites W2765181149 @default.
- W3024662599 cites W2789580579 @default.
- W3024662599 cites W2883382304 @default.
- W3024662599 cites W2884554184 @default.
- W3024662599 cites W2885995833 @default.
- W3024662599 doi "https://doi.org/10.13031/trans.13576" @default.
- W3024662599 hasPublicationYear "2020" @default.
- W3024662599 type Work @default.
- W3024662599 sameAs 3024662599 @default.
- W3024662599 citedByCount "6" @default.
- W3024662599 countsByYear W30246625992020 @default.
- W3024662599 countsByYear W30246625992021 @default.
- W3024662599 countsByYear W30246625992022 @default.
- W3024662599 countsByYear W30246625992023 @default.
- W3024662599 crossrefType "journal-article" @default.
- W3024662599 hasAuthorship W3024662599A5008213588 @default.
- W3024662599 hasAuthorship W3024662599A5016124948 @default.
- W3024662599 hasAuthorship W3024662599A5021471077 @default.
- W3024662599 hasAuthorship W3024662599A5030011309 @default.
- W3024662599 hasAuthorship W3024662599A5048533950 @default.
- W3024662599 hasAuthorship W3024662599A5089960072 @default.
- W3024662599 hasConcept C119857082 @default.
- W3024662599 hasConcept C126645576 @default.
- W3024662599 hasConcept C127413603 @default.
- W3024662599 hasConcept C150547873 @default.
- W3024662599 hasConcept C16397148 @default.
- W3024662599 hasConcept C187320778 @default.
- W3024662599 hasConcept C18903297 @default.
- W3024662599 hasConcept C205649164 @default.
- W3024662599 hasConcept C2780623283 @default.
- W3024662599 hasConcept C2780852570 @default.
- W3024662599 hasConcept C39432304 @default.
- W3024662599 hasConcept C41008148 @default.
- W3024662599 hasConcept C50477045 @default.
- W3024662599 hasConcept C53739315 @default.
- W3024662599 hasConcept C58640448 @default.
- W3024662599 hasConcept C6557445 @default.
- W3024662599 hasConcept C76886044 @default.
- W3024662599 hasConcept C86803240 @default.
- W3024662599 hasConceptScore W3024662599C119857082 @default.
- W3024662599 hasConceptScore W3024662599C126645576 @default.
- W3024662599 hasConceptScore W3024662599C127413603 @default.
- W3024662599 hasConceptScore W3024662599C150547873 @default.
- W3024662599 hasConceptScore W3024662599C16397148 @default.
- W3024662599 hasConceptScore W3024662599C187320778 @default.