Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024746232> ?p ?o ?g. }
- W3024746232 endingPage "3415" @default.
- W3024746232 startingPage "3403" @default.
- W3024746232 abstract "Cervical cancer causes the fourth most cancer-related deaths of women worldwide. Early detection of cervical intraepithelial neoplasia (CIN) can significantly increase the survival rate of patients. In this paper, we propose a deep learning framework for the accurate identification of LSIL+ (including CIN and cervical cancer) using time-lapsed colposcopic images. The proposed framework involves two main components, i.e., key-frame feature encoding networks and feature fusion network. The features of the original (pre-acetic-acid) image and the colposcopic images captured at around 60s, 90s, 120s and 150s during the acetic acid test are encoded by the feature encoding networks. Several fusion approaches are compared, all of which outperform the existing automated cervical cancer diagnosis systems using a single time slot. A graph convolutional network with edge features (E-GCN) is found to be the most suitable fusion approach in our study, due to its excellent explainability consistent with the clinical practice. A large-scale dataset, containing time-lapsed colposcopic images from 7,668 patients, is collected from the collaborative hospital to train and validate our deep learning framework. Colposcopists are invited to compete with our computer-aided diagnosis system. The proposed deep learning framework achieves a classification accuracy of 78.33%—comparable to that of an in-service colposcopist—which demonstrates its potential to provide assistance in the realistic clinical scenario." @default.
- W3024746232 created "2020-05-21" @default.
- W3024746232 creator A5002877635 @default.
- W3024746232 creator A5010952178 @default.
- W3024746232 creator A5023533442 @default.
- W3024746232 creator A5028225823 @default.
- W3024746232 creator A5037123881 @default.
- W3024746232 creator A5045656118 @default.
- W3024746232 creator A5051649145 @default.
- W3024746232 creator A5053780153 @default.
- W3024746232 creator A5060146598 @default.
- W3024746232 creator A5066039369 @default.
- W3024746232 date "2020-11-01" @default.
- W3024746232 modified "2023-10-10" @default.
- W3024746232 title "Computer-Aided Cervical Cancer Diagnosis Using Time-Lapsed Colposcopic Images" @default.
- W3024746232 cites W1486082332 @default.
- W3024746232 cites W1501856433 @default.
- W3024746232 cites W1979319218 @default.
- W3024746232 cites W2064675550 @default.
- W3024746232 cites W2068042986 @default.
- W3024746232 cites W2095753131 @default.
- W3024746232 cites W2116341502 @default.
- W3024746232 cites W2117539524 @default.
- W3024746232 cites W2139906443 @default.
- W3024746232 cites W2140379780 @default.
- W3024746232 cites W2147359267 @default.
- W3024746232 cites W2194775991 @default.
- W3024746232 cites W2272984102 @default.
- W3024746232 cites W2295107390 @default.
- W3024746232 cites W2346995911 @default.
- W3024746232 cites W2523506545 @default.
- W3024746232 cites W2581082771 @default.
- W3024746232 cites W2757972151 @default.
- W3024746232 cites W2759162212 @default.
- W3024746232 cites W2777273430 @default.
- W3024746232 cites W2782769512 @default.
- W3024746232 cites W2803275818 @default.
- W3024746232 cites W2804900928 @default.
- W3024746232 cites W2809167334 @default.
- W3024746232 cites W2889646458 @default.
- W3024746232 cites W2892032579 @default.
- W3024746232 cites W2897755679 @default.
- W3024746232 cites W2897927086 @default.
- W3024746232 cites W2898020899 @default.
- W3024746232 cites W2917351544 @default.
- W3024746232 cites W2932399282 @default.
- W3024746232 cites W2942680458 @default.
- W3024746232 cites W2950697450 @default.
- W3024746232 cites W2963037989 @default.
- W3024746232 cites W2963319519 @default.
- W3024746232 cites W2963446712 @default.
- W3024746232 cites W2971614929 @default.
- W3024746232 doi "https://doi.org/10.1109/tmi.2020.2994778" @default.
- W3024746232 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32406830" @default.
- W3024746232 hasPublicationYear "2020" @default.
- W3024746232 type Work @default.
- W3024746232 sameAs 3024746232 @default.
- W3024746232 citedByCount "46" @default.
- W3024746232 countsByYear W30247462322020 @default.
- W3024746232 countsByYear W30247462322021 @default.
- W3024746232 countsByYear W30247462322022 @default.
- W3024746232 countsByYear W30247462322023 @default.
- W3024746232 crossrefType "journal-article" @default.
- W3024746232 hasAuthorship W3024746232A5002877635 @default.
- W3024746232 hasAuthorship W3024746232A5010952178 @default.
- W3024746232 hasAuthorship W3024746232A5023533442 @default.
- W3024746232 hasAuthorship W3024746232A5028225823 @default.
- W3024746232 hasAuthorship W3024746232A5037123881 @default.
- W3024746232 hasAuthorship W3024746232A5045656118 @default.
- W3024746232 hasAuthorship W3024746232A5051649145 @default.
- W3024746232 hasAuthorship W3024746232A5053780153 @default.
- W3024746232 hasAuthorship W3024746232A5060146598 @default.
- W3024746232 hasAuthorship W3024746232A5066039369 @default.
- W3024746232 hasConcept C121608353 @default.
- W3024746232 hasConcept C126322002 @default.
- W3024746232 hasConcept C126838900 @default.
- W3024746232 hasConcept C154945302 @default.
- W3024746232 hasConcept C19527891 @default.
- W3024746232 hasConcept C2776117191 @default.
- W3024746232 hasConcept C2778220009 @default.
- W3024746232 hasConcept C31972630 @default.
- W3024746232 hasConcept C41008148 @default.
- W3024746232 hasConcept C71924100 @default.
- W3024746232 hasConceptScore W3024746232C121608353 @default.
- W3024746232 hasConceptScore W3024746232C126322002 @default.
- W3024746232 hasConceptScore W3024746232C126838900 @default.
- W3024746232 hasConceptScore W3024746232C154945302 @default.
- W3024746232 hasConceptScore W3024746232C19527891 @default.
- W3024746232 hasConceptScore W3024746232C2776117191 @default.
- W3024746232 hasConceptScore W3024746232C2778220009 @default.
- W3024746232 hasConceptScore W3024746232C31972630 @default.
- W3024746232 hasConceptScore W3024746232C41008148 @default.
- W3024746232 hasConceptScore W3024746232C71924100 @default.
- W3024746232 hasFunder F4320321001 @default.
- W3024746232 hasFunder F4320335767 @default.
- W3024746232 hasIssue "11" @default.
- W3024746232 hasLocation W30247462321 @default.
- W3024746232 hasOpenAccess W3024746232 @default.