Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024851657> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3024851657 endingPage "S15" @default.
- W3024851657 startingPage "S15" @default.
- W3024851657 abstract "Introduction: The Canadian Syncope Risk Score (CSRS) is a validated risk tool developed using the best practices of conventional biostatistics, for predicting 30-day serious adverse events (SAE) after an Emergency Department (ED) visit for syncope. We sought to improve on the prediction ability of the CSRS and compared it to physician judgement using artificial intelligence (AI) research with modern machine learning (ML) methods. Methods: We used the prospective multicenter cohort data collected for the CSRS derivation and validation at 11 EDs across Canada over an 8-year period. The same 43 candidate variables considered for CSRS development were used to train and validate the four classes of ML models to predict 30-day SAE (death, arrhythmias, MI, structural heart disease, pulmonary embolism, hemorrhage) after ED disposition. Physician judgement was modeled using the two variables, referral for consultation and hospitalization. We compared the area under the curve (AUC) for the three models. Results: The proportion of patients who suffered 30-day SAE in the derivation cohort (N = 4030) was 3.6% and in validation phase (N = 2290) was 3.4%. Characteristics of the both cohorts were similar with no shift. The best performing ML model, a gradient boosting tree-based model used all 43 variables as predictors as opposed to the 9 final CSRS predictors. The AUC for the three models on the validation data were: best ML model 0.91 (95% CI 0.87–0.93), CSRS 0.87 (95% CI 0.83–0.90) and physician judgment 0.79 (95% CI 0.74 - 0.84). The most important predictors in the ML model were the same as the CSRS predictors. Conclusion: A ML model developed using AI method for risk-stratification of ED syncope performed with slightly better discrimination ability though not significantly different when compared to the CSRS. Both the ML model and the CSRS were better predictors of poor outcomes after syncope than physician judgement. ML models can perform with similar discrimination abilities when compared to traditional statistical models and outperform physician judgement given their ability to use all candidate variables." @default.
- W3024851657 created "2020-05-21" @default.
- W3024851657 creator A5027600151 @default.
- W3024851657 creator A5040725785 @default.
- W3024851657 creator A5042214153 @default.
- W3024851657 creator A5068182641 @default.
- W3024851657 creator A5089517417 @default.
- W3024851657 creator A5090070105 @default.
- W3024851657 date "2020-05-01" @default.
- W3024851657 modified "2023-09-24" @default.
- W3024851657 title "LO22: Risk-stratification of emergency department syncope by artificial intelligence using machine learning: human, statistics or machine" @default.
- W3024851657 doi "https://doi.org/10.1017/cem.2020.78" @default.
- W3024851657 hasPublicationYear "2020" @default.
- W3024851657 type Work @default.
- W3024851657 sameAs 3024851657 @default.
- W3024851657 citedByCount "0" @default.
- W3024851657 crossrefType "journal-article" @default.
- W3024851657 hasAuthorship W3024851657A5027600151 @default.
- W3024851657 hasAuthorship W3024851657A5040725785 @default.
- W3024851657 hasAuthorship W3024851657A5042214153 @default.
- W3024851657 hasAuthorship W3024851657A5068182641 @default.
- W3024851657 hasAuthorship W3024851657A5089517417 @default.
- W3024851657 hasAuthorship W3024851657A5090070105 @default.
- W3024851657 hasBestOaLocation W30248516571 @default.
- W3024851657 hasConcept C118552586 @default.
- W3024851657 hasConcept C119857082 @default.
- W3024851657 hasConcept C126322002 @default.
- W3024851657 hasConcept C154945302 @default.
- W3024851657 hasConcept C188816634 @default.
- W3024851657 hasConcept C194828623 @default.
- W3024851657 hasConcept C2776135927 @default.
- W3024851657 hasConcept C2776265017 @default.
- W3024851657 hasConcept C2780724011 @default.
- W3024851657 hasConcept C3020404979 @default.
- W3024851657 hasConcept C41008148 @default.
- W3024851657 hasConcept C512399662 @default.
- W3024851657 hasConcept C71924100 @default.
- W3024851657 hasConcept C72563966 @default.
- W3024851657 hasConceptScore W3024851657C118552586 @default.
- W3024851657 hasConceptScore W3024851657C119857082 @default.
- W3024851657 hasConceptScore W3024851657C126322002 @default.
- W3024851657 hasConceptScore W3024851657C154945302 @default.
- W3024851657 hasConceptScore W3024851657C188816634 @default.
- W3024851657 hasConceptScore W3024851657C194828623 @default.
- W3024851657 hasConceptScore W3024851657C2776135927 @default.
- W3024851657 hasConceptScore W3024851657C2776265017 @default.
- W3024851657 hasConceptScore W3024851657C2780724011 @default.
- W3024851657 hasConceptScore W3024851657C3020404979 @default.
- W3024851657 hasConceptScore W3024851657C41008148 @default.
- W3024851657 hasConceptScore W3024851657C512399662 @default.
- W3024851657 hasConceptScore W3024851657C71924100 @default.
- W3024851657 hasConceptScore W3024851657C72563966 @default.
- W3024851657 hasIssue "S1" @default.
- W3024851657 hasLocation W30248516571 @default.
- W3024851657 hasOpenAccess W3024851657 @default.
- W3024851657 hasPrimaryLocation W30248516571 @default.
- W3024851657 hasRelatedWork W2026095104 @default.
- W3024851657 hasRelatedWork W2042489430 @default.
- W3024851657 hasRelatedWork W2042981291 @default.
- W3024851657 hasRelatedWork W2061619006 @default.
- W3024851657 hasRelatedWork W2146622306 @default.
- W3024851657 hasRelatedWork W2510700473 @default.
- W3024851657 hasRelatedWork W2613637409 @default.
- W3024851657 hasRelatedWork W2979375907 @default.
- W3024851657 hasRelatedWork W3035671959 @default.
- W3024851657 hasRelatedWork W4232888950 @default.
- W3024851657 hasVolume "22" @default.
- W3024851657 isParatext "false" @default.
- W3024851657 isRetracted "false" @default.
- W3024851657 magId "3024851657" @default.
- W3024851657 workType "article" @default.