Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024861710> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W3024861710 endingPage "190" @default.
- W3024861710 startingPage "183" @default.
- W3024861710 abstract "Abstract Modern medical diagnosis heavily rely on bio-medical and clinical data. Machine learning algorithms have proven effectiveness in mining this data to provide an aid to the physicians in supporting their decisions. In response, machine learning based approaches were developed to address this problem. These approaches vary in terms of effectiveness and computational cost. Attention has been paid towards non-communicable diseases as they are very common and have life threatening risk factors. The diagnosis of diabetes or breast cancer can be considered a binary classification problem. This paper proposes a new machine learning based algorithm, Geometrical Driven Diagnosis (GDD), to diagnose diabetes and breast cancer with accuracy up to 99.96% and 95.8% respectively." @default.
- W3024861710 created "2020-05-21" @default.
- W3024861710 creator A5010653774 @default.
- W3024861710 creator A5084740643 @default.
- W3024861710 date "2020-09-01" @default.
- W3024861710 modified "2023-09-24" @default.
- W3024861710 title "GDD: Geometrical driven diagnosis based on biomedical data" @default.
- W3024861710 cites W2014226385 @default.
- W3024861710 cites W2056132907 @default.
- W3024861710 cites W2061680337 @default.
- W3024861710 cites W2088252378 @default.
- W3024861710 cites W2160503958 @default.
- W3024861710 cites W2763148304 @default.
- W3024861710 cites W2767118735 @default.
- W3024861710 cites W2773680231 @default.
- W3024861710 cites W2807027008 @default.
- W3024861710 cites W2886719947 @default.
- W3024861710 cites W4211058450 @default.
- W3024861710 cites W4213156113 @default.
- W3024861710 cites W44929223 @default.
- W3024861710 doi "https://doi.org/10.1016/j.eij.2020.04.002" @default.
- W3024861710 hasPublicationYear "2020" @default.
- W3024861710 type Work @default.
- W3024861710 sameAs 3024861710 @default.
- W3024861710 citedByCount "0" @default.
- W3024861710 crossrefType "journal-article" @default.
- W3024861710 hasAuthorship W3024861710A5010653774 @default.
- W3024861710 hasAuthorship W3024861710A5084740643 @default.
- W3024861710 hasBestOaLocation W30248617101 @default.
- W3024861710 hasConcept C121684516 @default.
- W3024861710 hasConcept C154945302 @default.
- W3024861710 hasConcept C41008148 @default.
- W3024861710 hasConceptScore W3024861710C121684516 @default.
- W3024861710 hasConceptScore W3024861710C154945302 @default.
- W3024861710 hasConceptScore W3024861710C41008148 @default.
- W3024861710 hasIssue "3" @default.
- W3024861710 hasLocation W30248617101 @default.
- W3024861710 hasLocation W30248617102 @default.
- W3024861710 hasOpenAccess W3024861710 @default.
- W3024861710 hasPrimaryLocation W30248617101 @default.
- W3024861710 hasRelatedWork W2135024282 @default.
- W3024861710 hasRelatedWork W2361017481 @default.
- W3024861710 hasRelatedWork W2385729804 @default.
- W3024861710 hasRelatedWork W2386067591 @default.
- W3024861710 hasRelatedWork W2387604983 @default.
- W3024861710 hasRelatedWork W2643419842 @default.
- W3024861710 hasRelatedWork W3173443136 @default.
- W3024861710 hasRelatedWork W4214924096 @default.
- W3024861710 hasRelatedWork W4235112656 @default.
- W3024861710 hasRelatedWork W4246418678 @default.
- W3024861710 hasVolume "21" @default.
- W3024861710 isParatext "false" @default.
- W3024861710 isRetracted "false" @default.
- W3024861710 magId "3024861710" @default.
- W3024861710 workType "article" @default.