Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024886751> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3024886751 endingPage "93748" @default.
- W3024886751 startingPage "93733" @default.
- W3024886751 abstract "At present, the vehicle obstacle detection system usually uses different devices or sensors to perceive and obtain the obstacle information. However, omni-directional obstacle detection is difficult to realize because these devices or sensors are usually easy to be affected by environmental lighting and the material properties of the obstacle surface. Furthermore, most sensors have limited information regarding distance, which limits their application to omni-directional obstacle detection. To solve this problem, this paper proposes a method using depth camera for omni-directional obstacle detection. A method applying region growth for depth image and a fast inpainting method for depth image are proposed to extract and repair the obstacle regions in the depth images obtained by installing depth cameras around the car body. An improved method applying iterative normalized cut is also proposed to cluster and segment fragmentary and irregular obstacle regions to generate the complete obstacle regions. Finally, the obstacle regions are overviewed using a three-dimensional visualization method to realize omni-directional obstacle viewing. The results of experiments conducted in an environment with different obstacles during the day and night demonstrate that, compared with other methods, our proposed approach can effectively promote the ability to detect complex obstacles, and largely improve the detection speed; furthermore, obstacle detection using our method will be unaffected by environmental lighting. Each of these advantages provided by our method can significantly promote the driving safety of unmanned or other types of vehicles." @default.
- W3024886751 created "2020-05-21" @default.
- W3024886751 creator A5005552412 @default.
- W3024886751 creator A5012088434 @default.
- W3024886751 creator A5050581571 @default.
- W3024886751 creator A5071453781 @default.
- W3024886751 date "2020-01-01" @default.
- W3024886751 modified "2023-10-04" @default.
- W3024886751 title "Omni-Directional Obstacle Detection for Vehicles Based on Depth Camera" @default.
- W3024886751 cites W1822226678 @default.
- W3024886751 cites W1903029394 @default.
- W3024886751 cites W1986940113 @default.
- W3024886751 cites W2016053056 @default.
- W3024886751 cites W2050931558 @default.
- W3024886751 cites W2051610568 @default.
- W3024886751 cites W2055813343 @default.
- W3024886751 cites W2085805060 @default.
- W3024886751 cites W2088241806 @default.
- W3024886751 cites W2107965824 @default.
- W3024886751 cites W2123277060 @default.
- W3024886751 cites W2144041313 @default.
- W3024886751 cites W2154458843 @default.
- W3024886751 cites W2157665828 @default.
- W3024886751 cites W2159107954 @default.
- W3024886751 cites W2168356304 @default.
- W3024886751 cites W2291536712 @default.
- W3024886751 cites W2323630574 @default.
- W3024886751 cites W2417447115 @default.
- W3024886751 cites W2468368736 @default.
- W3024886751 cites W2507284507 @default.
- W3024886751 cites W2744749505 @default.
- W3024886751 cites W2787889241 @default.
- W3024886751 cites W2808603917 @default.
- W3024886751 cites W2921528463 @default.
- W3024886751 cites W2923693971 @default.
- W3024886751 cites W2950730819 @default.
- W3024886751 doi "https://doi.org/10.1109/access.2020.2993934" @default.
- W3024886751 hasPublicationYear "2020" @default.
- W3024886751 type Work @default.
- W3024886751 sameAs 3024886751 @default.
- W3024886751 citedByCount "4" @default.
- W3024886751 countsByYear W30248867512020 @default.
- W3024886751 countsByYear W30248867512021 @default.
- W3024886751 countsByYear W30248867512022 @default.
- W3024886751 crossrefType "journal-article" @default.
- W3024886751 hasAuthorship W3024886751A5005552412 @default.
- W3024886751 hasAuthorship W3024886751A5012088434 @default.
- W3024886751 hasAuthorship W3024886751A5050581571 @default.
- W3024886751 hasAuthorship W3024886751A5071453781 @default.
- W3024886751 hasBestOaLocation W30248867511 @default.
- W3024886751 hasConcept C121684516 @default.
- W3024886751 hasConcept C153180895 @default.
- W3024886751 hasConcept C154945302 @default.
- W3024886751 hasConcept C17744445 @default.
- W3024886751 hasConcept C199539241 @default.
- W3024886751 hasConcept C2776151529 @default.
- W3024886751 hasConcept C2776650193 @default.
- W3024886751 hasConcept C31972630 @default.
- W3024886751 hasConcept C41008148 @default.
- W3024886751 hasConceptScore W3024886751C121684516 @default.
- W3024886751 hasConceptScore W3024886751C153180895 @default.
- W3024886751 hasConceptScore W3024886751C154945302 @default.
- W3024886751 hasConceptScore W3024886751C17744445 @default.
- W3024886751 hasConceptScore W3024886751C199539241 @default.
- W3024886751 hasConceptScore W3024886751C2776151529 @default.
- W3024886751 hasConceptScore W3024886751C2776650193 @default.
- W3024886751 hasConceptScore W3024886751C31972630 @default.
- W3024886751 hasConceptScore W3024886751C41008148 @default.
- W3024886751 hasFunder F4320321001 @default.
- W3024886751 hasFunder F4320324173 @default.
- W3024886751 hasLocation W30248867511 @default.
- W3024886751 hasLocation W30248867512 @default.
- W3024886751 hasOpenAccess W3024886751 @default.
- W3024886751 hasPrimaryLocation W30248867511 @default.
- W3024886751 hasRelatedWork W1605248340 @default.
- W3024886751 hasRelatedWork W2045615376 @default.
- W3024886751 hasRelatedWork W2051516969 @default.
- W3024886751 hasRelatedWork W2110946546 @default.
- W3024886751 hasRelatedWork W2126807813 @default.
- W3024886751 hasRelatedWork W2166492906 @default.
- W3024886751 hasRelatedWork W2242126349 @default.
- W3024886751 hasRelatedWork W2382934686 @default.
- W3024886751 hasRelatedWork W2965672371 @default.
- W3024886751 hasRelatedWork W4293799789 @default.
- W3024886751 hasVolume "8" @default.
- W3024886751 isParatext "false" @default.
- W3024886751 isRetracted "false" @default.
- W3024886751 magId "3024886751" @default.
- W3024886751 workType "article" @default.