Matches in SemOpenAlex for { <https://semopenalex.org/work/W3024895859> ?p ?o ?g. }
- W3024895859 endingPage "250" @default.
- W3024895859 startingPage "233" @default.
- W3024895859 abstract "Abstract Accurate and high spatial resolution (<100 m) surface climate information is crucial for process‐based modelling in hydrology, ecology, agriculture, urban studies etc, especially in complex terrain landscapes where coarse grid resolution information (∼10 km) is inadequate to represent pronounced local variability. We used a machine learning‐based workflow to predict high resolution (30 m) and sub‐daily atmospheric variables fields of near‐surface air temperature and humidity, and wind speed. The method used the Principal Component Analysis (PCA) decomposition applied on ground stations observations or Global Climate Model (GCM) residual error, in a sequence with bias correction and statistical models (Linear Regression‐LR, Artificial Neural Network model‐ANN and Empirical Quantile Mapping‐EQM) to provide downscaling from large scale atmospheric conditions to complex terrain variability. The predictions described relationships of Principal Component (PC) scores dependent on GCM temporal variability on 6‐hourly basis (with LR or ANN or EQM), and PC loadings dependent on topographic indexes to help providing horizontal sub‐grid extrapolation. The methods were validated with a 1‐year dataset from a dense weather stations network deployed in a complex terrain basin in tropical climate of Southeast Brazil. We present an exhaustive description of the PC modes daily/seasonal variability for each variable, and their spatial variability associated to the topography and thermal driven circulations. The predictions in general substantially improved accuracy when compared to GCM outputs, especially near the valley and in sheltered area where local effects are mandatories. Specially, ANN and EQM significantly improved the predictions at the variability of extreme events, such as the formation of strong cold air pooling or wetting in the valley." @default.
- W3024895859 created "2020-05-21" @default.
- W3024895859 creator A5010245257 @default.
- W3024895859 creator A5053466861 @default.
- W3024895859 creator A5069970949 @default.
- W3024895859 date "2020-05-20" @default.
- W3024895859 modified "2023-10-18" @default.
- W3024895859 title "Fine scale surface climate in complex terrain using machine learning" @default.
- W3024895859 cites W1592729344 @default.
- W3024895859 cites W1867005924 @default.
- W3024895859 cites W1871370964 @default.
- W3024895859 cites W1966334841 @default.
- W3024895859 cites W1966489326 @default.
- W3024895859 cites W1972052007 @default.
- W3024895859 cites W1975025288 @default.
- W3024895859 cites W1978238614 @default.
- W3024895859 cites W1984280939 @default.
- W3024895859 cites W1989839776 @default.
- W3024895859 cites W1995047010 @default.
- W3024895859 cites W2003094610 @default.
- W3024895859 cites W2004116707 @default.
- W3024895859 cites W2011196363 @default.
- W3024895859 cites W2018330245 @default.
- W3024895859 cites W2019932413 @default.
- W3024895859 cites W2020079854 @default.
- W3024895859 cites W2021688493 @default.
- W3024895859 cites W2033481223 @default.
- W3024895859 cites W2039859565 @default.
- W3024895859 cites W2052138108 @default.
- W3024895859 cites W2057433825 @default.
- W3024895859 cites W2075809877 @default.
- W3024895859 cites W2083761011 @default.
- W3024895859 cites W2088571921 @default.
- W3024895859 cites W2105729095 @default.
- W3024895859 cites W2107920385 @default.
- W3024895859 cites W2112776483 @default.
- W3024895859 cites W2115390542 @default.
- W3024895859 cites W2117104451 @default.
- W3024895859 cites W2118778800 @default.
- W3024895859 cites W2121745948 @default.
- W3024895859 cites W2127268959 @default.
- W3024895859 cites W2136611861 @default.
- W3024895859 cites W2137410991 @default.
- W3024895859 cites W2139396291 @default.
- W3024895859 cites W2144142679 @default.
- W3024895859 cites W2149955017 @default.
- W3024895859 cites W2152302667 @default.
- W3024895859 cites W2153237487 @default.
- W3024895859 cites W2156691552 @default.
- W3024895859 cites W2162280645 @default.
- W3024895859 cites W2171254377 @default.
- W3024895859 cites W2174485043 @default.
- W3024895859 cites W2179874655 @default.
- W3024895859 cites W2180272227 @default.
- W3024895859 cites W2503240722 @default.
- W3024895859 cites W2784327149 @default.
- W3024895859 cites W2789674734 @default.
- W3024895859 cites W2895325964 @default.
- W3024895859 cites W2913323966 @default.
- W3024895859 cites W2919115771 @default.
- W3024895859 cites W2974527409 @default.
- W3024895859 cites W4245846053 @default.
- W3024895859 cites W4255672524 @default.
- W3024895859 cites W68920025 @default.
- W3024895859 doi "https://doi.org/10.1002/joc.6617" @default.
- W3024895859 hasPublicationYear "2020" @default.
- W3024895859 type Work @default.
- W3024895859 sameAs 3024895859 @default.
- W3024895859 citedByCount "1" @default.
- W3024895859 countsByYear W30248958592021 @default.
- W3024895859 crossrefType "journal-article" @default.
- W3024895859 hasAuthorship W3024895859A5010245257 @default.
- W3024895859 hasAuthorship W3024895859A5053466861 @default.
- W3024895859 hasAuthorship W3024895859A5069970949 @default.
- W3024895859 hasConcept C105795698 @default.
- W3024895859 hasConcept C107054158 @default.
- W3024895859 hasConcept C127313418 @default.
- W3024895859 hasConcept C153294291 @default.
- W3024895859 hasConcept C161840515 @default.
- W3024895859 hasConcept C194507410 @default.
- W3024895859 hasConcept C205649164 @default.
- W3024895859 hasConcept C27438332 @default.
- W3024895859 hasConcept C2778755073 @default.
- W3024895859 hasConcept C33923547 @default.
- W3024895859 hasConcept C39432304 @default.
- W3024895859 hasConcept C41156917 @default.
- W3024895859 hasConcept C49204034 @default.
- W3024895859 hasConcept C58640448 @default.
- W3024895859 hasConceptScore W3024895859C105795698 @default.
- W3024895859 hasConceptScore W3024895859C107054158 @default.
- W3024895859 hasConceptScore W3024895859C127313418 @default.
- W3024895859 hasConceptScore W3024895859C153294291 @default.
- W3024895859 hasConceptScore W3024895859C161840515 @default.
- W3024895859 hasConceptScore W3024895859C194507410 @default.
- W3024895859 hasConceptScore W3024895859C205649164 @default.
- W3024895859 hasConceptScore W3024895859C27438332 @default.
- W3024895859 hasConceptScore W3024895859C2778755073 @default.
- W3024895859 hasConceptScore W3024895859C33923547 @default.