Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025031612> ?p ?o ?g. }
- W3025031612 endingPage "92874" @default.
- W3025031612 startingPage "92861" @default.
- W3025031612 abstract "In this paper, we extend the original Normalized Least Mean Fourth (NLMF) and Normalized Least Mean Square (NLMS) adaptive filtering algorithms into Geometric Algebra (GA) space to enable them to process multidimensional signals. We redefine the cost functions and propose the GA based NLMF and NLMS algorithms (GA-NLMF & GA-NLMS). We take full advantage of the ability of GA to represent multidimensional signals in GA space. GA-NLMS minimizes the cost function of the normalized mean square of the error signal, and remain stable as the input signal of the filter increases. GA-NLMS has fast convergence rate but higher steady-state error. The GA-NLMF algorithm minimizes the cost function of the normalized mean fourth of the error signal. Simulation results show that our proposed GA-NLMS adaptive filtering algorithm outperforms original NLMS algorithm in terms of convergence rate and steady-state error, and GA-NLMF outperforms both NLMF and GA-NLMS algorithms. GA-NLMF has faster convergence rate and lower steady state error, which is proved in the experiments." @default.
- W3025031612 created "2020-05-21" @default.
- W3025031612 creator A5012772285 @default.
- W3025031612 creator A5051316157 @default.
- W3025031612 creator A5070812231 @default.
- W3025031612 creator A5076702481 @default.
- W3025031612 creator A5078581175 @default.
- W3025031612 date "2020-01-01" @default.
- W3025031612 modified "2023-09-30" @default.
- W3025031612 title "A Normalized Adaptive Filtering Algorithm Based on Geometric Algebra" @default.
- W3025031612 cites W1995106110 @default.
- W3025031612 cites W2022718409 @default.
- W3025031612 cites W2063253123 @default.
- W3025031612 cites W2063487929 @default.
- W3025031612 cites W2099057098 @default.
- W3025031612 cites W2105591650 @default.
- W3025031612 cites W2107885148 @default.
- W3025031612 cites W2111181489 @default.
- W3025031612 cites W2122076389 @default.
- W3025031612 cites W2122570300 @default.
- W3025031612 cites W2126773478 @default.
- W3025031612 cites W2138252520 @default.
- W3025031612 cites W2141793797 @default.
- W3025031612 cites W2156208223 @default.
- W3025031612 cites W2164544312 @default.
- W3025031612 cites W2396268833 @default.
- W3025031612 cites W2476841360 @default.
- W3025031612 cites W2605543710 @default.
- W3025031612 cites W2795187242 @default.
- W3025031612 cites W2893930072 @default.
- W3025031612 cites W2899336196 @default.
- W3025031612 cites W2908755040 @default.
- W3025031612 cites W2916283775 @default.
- W3025031612 cites W2946420433 @default.
- W3025031612 cites W2950594951 @default.
- W3025031612 cites W2962901069 @default.
- W3025031612 cites W2964844128 @default.
- W3025031612 cites W2981387314 @default.
- W3025031612 cites W3102497486 @default.
- W3025031612 cites W4237964482 @default.
- W3025031612 cites W4239240501 @default.
- W3025031612 doi "https://doi.org/10.1109/access.2020.2994230" @default.
- W3025031612 hasPublicationYear "2020" @default.
- W3025031612 type Work @default.
- W3025031612 sameAs 3025031612 @default.
- W3025031612 citedByCount "11" @default.
- W3025031612 countsByYear W30250316122021 @default.
- W3025031612 countsByYear W30250316122022 @default.
- W3025031612 countsByYear W30250316122023 @default.
- W3025031612 crossrefType "journal-article" @default.
- W3025031612 hasAuthorship W3025031612A5012772285 @default.
- W3025031612 hasAuthorship W3025031612A5051316157 @default.
- W3025031612 hasAuthorship W3025031612A5070812231 @default.
- W3025031612 hasAuthorship W3025031612A5076702481 @default.
- W3025031612 hasAuthorship W3025031612A5078581175 @default.
- W3025031612 hasBestOaLocation W30250316121 @default.
- W3025031612 hasConcept C102248274 @default.
- W3025031612 hasConcept C105795698 @default.
- W3025031612 hasConcept C11413529 @default.
- W3025031612 hasConcept C139945424 @default.
- W3025031612 hasConcept C14036430 @default.
- W3025031612 hasConcept C147789679 @default.
- W3025031612 hasConcept C162324750 @default.
- W3025031612 hasConcept C185592680 @default.
- W3025031612 hasConcept C199360897 @default.
- W3025031612 hasConcept C26517878 @default.
- W3025031612 hasConcept C2777303404 @default.
- W3025031612 hasConcept C2779843651 @default.
- W3025031612 hasConcept C32617633 @default.
- W3025031612 hasConcept C33923547 @default.
- W3025031612 hasConcept C38652104 @default.
- W3025031612 hasConcept C41008148 @default.
- W3025031612 hasConcept C50522688 @default.
- W3025031612 hasConcept C57869625 @default.
- W3025031612 hasConcept C78458016 @default.
- W3025031612 hasConcept C8171440 @default.
- W3025031612 hasConcept C86803240 @default.
- W3025031612 hasConceptScore W3025031612C102248274 @default.
- W3025031612 hasConceptScore W3025031612C105795698 @default.
- W3025031612 hasConceptScore W3025031612C11413529 @default.
- W3025031612 hasConceptScore W3025031612C139945424 @default.
- W3025031612 hasConceptScore W3025031612C14036430 @default.
- W3025031612 hasConceptScore W3025031612C147789679 @default.
- W3025031612 hasConceptScore W3025031612C162324750 @default.
- W3025031612 hasConceptScore W3025031612C185592680 @default.
- W3025031612 hasConceptScore W3025031612C199360897 @default.
- W3025031612 hasConceptScore W3025031612C26517878 @default.
- W3025031612 hasConceptScore W3025031612C2777303404 @default.
- W3025031612 hasConceptScore W3025031612C2779843651 @default.
- W3025031612 hasConceptScore W3025031612C32617633 @default.
- W3025031612 hasConceptScore W3025031612C33923547 @default.
- W3025031612 hasConceptScore W3025031612C38652104 @default.
- W3025031612 hasConceptScore W3025031612C41008148 @default.
- W3025031612 hasConceptScore W3025031612C50522688 @default.
- W3025031612 hasConceptScore W3025031612C57869625 @default.
- W3025031612 hasConceptScore W3025031612C78458016 @default.
- W3025031612 hasConceptScore W3025031612C8171440 @default.
- W3025031612 hasConceptScore W3025031612C86803240 @default.