Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025103497> ?p ?o ?g. }
- W3025103497 endingPage "725" @default.
- W3025103497 startingPage "713" @default.
- W3025103497 abstract "High level of tropospheric ozone concentration, exceeding allowable level has been frequently reported in Malaysia. This study proposes accurate model based on Machine Learning algorithms to predict Tropospheric ozone concentration in major cities located in Kuala Lumpur and Selangor, Malaysia. The proposed models were developed using three-year of historical data for different parameters as input to predict 24-hour and 12-hour of tropospheric ozone concentration. Different Machine Learning algorithms have been investigated, viz. Linear Regression, Neural Network and Boosted Decision Tree. The results revealed that wind speed, humidity, Nitrogen Oxide, Carbon Monoxide and Nitrogen Dioxide have significant influence on ozone formation. Boosted Decision Tree outperformed Linear regression and Neural Network algorithms for all stations. The performance of the proposed model improved by using 12-hours dataset instead of the 24-hour where R2 values were equal to 0.91, 0.88 and 0.87 for the three investigated stations. To assess the uncertainties of the Boosted Decision Tree model, 95% prediction uncertainties (95PPU) d-factors were introduced.95PPU showed about 94.4, 93.4, 96.7% and the d-factors were 0.001015, 0.001016 and 0.001124 which relate to S1, S2 and S3, respectively. The obtained results provide a reliable prediction model to mimic actual ozone concentration in different locations in Malaysia." @default.
- W3025103497 created "2020-05-21" @default.
- W3025103497 creator A5000656731 @default.
- W3025103497 creator A5008179908 @default.
- W3025103497 creator A5010789167 @default.
- W3025103497 creator A5037718934 @default.
- W3025103497 creator A5048550987 @default.
- W3025103497 creator A5052229605 @default.
- W3025103497 creator A5053370863 @default.
- W3025103497 creator A5084071339 @default.
- W3025103497 date "2020-01-01" @default.
- W3025103497 modified "2023-10-14" @default.
- W3025103497 title "Machine learning versus linear regression modelling approach for accurate ozone concentrations prediction" @default.
- W3025103497 cites W1985920679 @default.
- W3025103497 cites W2015773177 @default.
- W3025103497 cites W2050700668 @default.
- W3025103497 cites W2062533166 @default.
- W3025103497 cites W2082180494 @default.
- W3025103497 cites W2093425568 @default.
- W3025103497 cites W2105796585 @default.
- W3025103497 cites W2131697879 @default.
- W3025103497 cites W2292005033 @default.
- W3025103497 cites W2419385672 @default.
- W3025103497 cites W2510376577 @default.
- W3025103497 cites W2523463307 @default.
- W3025103497 cites W2765689140 @default.
- W3025103497 cites W2767085346 @default.
- W3025103497 cites W2791081216 @default.
- W3025103497 cites W2811290790 @default.
- W3025103497 cites W2885309195 @default.
- W3025103497 cites W2886875452 @default.
- W3025103497 cites W2888431710 @default.
- W3025103497 cites W2890687804 @default.
- W3025103497 cites W2895236552 @default.
- W3025103497 cites W2897386291 @default.
- W3025103497 cites W2909151008 @default.
- W3025103497 cites W2911322720 @default.
- W3025103497 cites W2939320242 @default.
- W3025103497 cites W2940886907 @default.
- W3025103497 cites W2942485354 @default.
- W3025103497 cites W2963157756 @default.
- W3025103497 cites W2971198853 @default.
- W3025103497 cites W2986294919 @default.
- W3025103497 cites W2994880698 @default.
- W3025103497 doi "https://doi.org/10.1080/19942060.2020.1758792" @default.
- W3025103497 hasPublicationYear "2020" @default.
- W3025103497 type Work @default.
- W3025103497 sameAs 3025103497 @default.
- W3025103497 citedByCount "25" @default.
- W3025103497 countsByYear W30251034972020 @default.
- W3025103497 countsByYear W30251034972021 @default.
- W3025103497 countsByYear W30251034972022 @default.
- W3025103497 countsByYear W30251034972023 @default.
- W3025103497 crossrefType "journal-article" @default.
- W3025103497 hasAuthorship W3025103497A5000656731 @default.
- W3025103497 hasAuthorship W3025103497A5008179908 @default.
- W3025103497 hasAuthorship W3025103497A5010789167 @default.
- W3025103497 hasAuthorship W3025103497A5037718934 @default.
- W3025103497 hasAuthorship W3025103497A5048550987 @default.
- W3025103497 hasAuthorship W3025103497A5052229605 @default.
- W3025103497 hasAuthorship W3025103497A5053370863 @default.
- W3025103497 hasAuthorship W3025103497A5084071339 @default.
- W3025103497 hasBestOaLocation W30251034971 @default.
- W3025103497 hasConcept C105795698 @default.
- W3025103497 hasConcept C11413529 @default.
- W3025103497 hasConcept C119857082 @default.
- W3025103497 hasConcept C152877465 @default.
- W3025103497 hasConcept C153294291 @default.
- W3025103497 hasConcept C161067210 @default.
- W3025103497 hasConcept C169258074 @default.
- W3025103497 hasConcept C205649164 @default.
- W3025103497 hasConcept C2776349674 @default.
- W3025103497 hasConcept C33923547 @default.
- W3025103497 hasConcept C39432304 @default.
- W3025103497 hasConcept C41008148 @default.
- W3025103497 hasConcept C45804977 @default.
- W3025103497 hasConcept C48921125 @default.
- W3025103497 hasConcept C50644808 @default.
- W3025103497 hasConcept C508106653 @default.
- W3025103497 hasConcept C83546350 @default.
- W3025103497 hasConcept C84525736 @default.
- W3025103497 hasConceptScore W3025103497C105795698 @default.
- W3025103497 hasConceptScore W3025103497C11413529 @default.
- W3025103497 hasConceptScore W3025103497C119857082 @default.
- W3025103497 hasConceptScore W3025103497C152877465 @default.
- W3025103497 hasConceptScore W3025103497C153294291 @default.
- W3025103497 hasConceptScore W3025103497C161067210 @default.
- W3025103497 hasConceptScore W3025103497C169258074 @default.
- W3025103497 hasConceptScore W3025103497C205649164 @default.
- W3025103497 hasConceptScore W3025103497C2776349674 @default.
- W3025103497 hasConceptScore W3025103497C33923547 @default.
- W3025103497 hasConceptScore W3025103497C39432304 @default.
- W3025103497 hasConceptScore W3025103497C41008148 @default.
- W3025103497 hasConceptScore W3025103497C45804977 @default.
- W3025103497 hasConceptScore W3025103497C48921125 @default.
- W3025103497 hasConceptScore W3025103497C50644808 @default.
- W3025103497 hasConceptScore W3025103497C508106653 @default.
- W3025103497 hasConceptScore W3025103497C83546350 @default.