Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025113607> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3025113607 endingPage "101720" @default.
- W3025113607 startingPage "101720" @default.
- W3025113607 abstract "Abstract This paper presents a new deep regression model, which we call DeepDistance, for cell detection in images acquired with inverted microscopy. This model considers cell detection as a task of finding most probable locations that suggest cell centers in an image. It represents this main task with a regression task of learning an inner distance metric. However, different than the previously reported regression based methods, the DeepDistance model proposes to approach its learning as a multi-task regression problem where multiple tasks are learned by using shared feature representations. To this end, it defines a secondary metric, normalized outer distance, to represent a different aspect of the problem and proposes to define its learning as complementary to the main cell detection task. In order to learn these two complementary tasks more effectively, the DeepDistance model designs a fully convolutional network (FCN) with a shared encoder path and end-to-end trains this FCN to concurrently learn the tasks in parallel. For further performance improvement on the main task, this paper also presents an extended version of the DeepDistance model that includes an auxiliary classification task and learns it in parallel to the two regression tasks by also sharing feature representations with them. DeepDistance uses the inner distances estimated by these FCNs in a detection algorithm to locate individual cells in a given image. In addition to this detection algorithm, this paper also suggests a cell segmentation algorithm that employs the estimated maps to find cell boundaries. Our experiments on three different human cell lines reveal that the proposed multi-task learning models, the DeepDistance model and its extended version, successfully identify the locations of cell as well as delineate their boundaries, even for the cell line that was not used in training, and improve the results of its counterparts." @default.
- W3025113607 created "2020-05-21" @default.
- W3025113607 creator A5011846587 @default.
- W3025113607 creator A5021269525 @default.
- W3025113607 creator A5037440533 @default.
- W3025113607 creator A5043106100 @default.
- W3025113607 date "2020-07-01" @default.
- W3025113607 modified "2023-10-17" @default.
- W3025113607 title "DeepDistance: A multi-task deep regression model for cell detection in inverted microscopy images" @default.
- W3025113607 cites W1582640985 @default.
- W3025113607 cites W2034980306 @default.
- W3025113607 cites W2080971197 @default.
- W3025113607 cites W2098360374 @default.
- W3025113607 cites W2119774436 @default.
- W3025113607 cites W2151538727 @default.
- W3025113607 cites W2158453778 @default.
- W3025113607 cites W2163181242 @default.
- W3025113607 cites W2248620004 @default.
- W3025113607 cites W2289218532 @default.
- W3025113607 cites W2312404985 @default.
- W3025113607 cites W2512138407 @default.
- W3025113607 cites W2550409828 @default.
- W3025113607 cites W2592929672 @default.
- W3025113607 cites W2738582428 @default.
- W3025113607 cites W2744103196 @default.
- W3025113607 cites W2798643036 @default.
- W3025113607 cites W28199049 @default.
- W3025113607 cites W2890587981 @default.
- W3025113607 cites W2913340405 @default.
- W3025113607 doi "https://doi.org/10.1016/j.media.2020.101720" @default.
- W3025113607 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32438298" @default.
- W3025113607 hasPublicationYear "2020" @default.
- W3025113607 type Work @default.
- W3025113607 sameAs 3025113607 @default.
- W3025113607 citedByCount "11" @default.
- W3025113607 countsByYear W30251136072020 @default.
- W3025113607 countsByYear W30251136072021 @default.
- W3025113607 countsByYear W30251136072022 @default.
- W3025113607 countsByYear W30251136072023 @default.
- W3025113607 crossrefType "journal-article" @default.
- W3025113607 hasAuthorship W3025113607A5011846587 @default.
- W3025113607 hasAuthorship W3025113607A5021269525 @default.
- W3025113607 hasAuthorship W3025113607A5037440533 @default.
- W3025113607 hasAuthorship W3025113607A5043106100 @default.
- W3025113607 hasBestOaLocation W30251136072 @default.
- W3025113607 hasConcept C105795698 @default.
- W3025113607 hasConcept C108583219 @default.
- W3025113607 hasConcept C119857082 @default.
- W3025113607 hasConcept C127413603 @default.
- W3025113607 hasConcept C153180895 @default.
- W3025113607 hasConcept C154945302 @default.
- W3025113607 hasConcept C201995342 @default.
- W3025113607 hasConcept C2780451532 @default.
- W3025113607 hasConcept C31972630 @default.
- W3025113607 hasConcept C33923547 @default.
- W3025113607 hasConcept C41008148 @default.
- W3025113607 hasConcept C83546350 @default.
- W3025113607 hasConceptScore W3025113607C105795698 @default.
- W3025113607 hasConceptScore W3025113607C108583219 @default.
- W3025113607 hasConceptScore W3025113607C119857082 @default.
- W3025113607 hasConceptScore W3025113607C127413603 @default.
- W3025113607 hasConceptScore W3025113607C153180895 @default.
- W3025113607 hasConceptScore W3025113607C154945302 @default.
- W3025113607 hasConceptScore W3025113607C201995342 @default.
- W3025113607 hasConceptScore W3025113607C2780451532 @default.
- W3025113607 hasConceptScore W3025113607C31972630 @default.
- W3025113607 hasConceptScore W3025113607C33923547 @default.
- W3025113607 hasConceptScore W3025113607C41008148 @default.
- W3025113607 hasConceptScore W3025113607C83546350 @default.
- W3025113607 hasFunder F4320322628 @default.
- W3025113607 hasLocation W30251136071 @default.
- W3025113607 hasLocation W30251136072 @default.
- W3025113607 hasLocation W30251136073 @default.
- W3025113607 hasOpenAccess W3025113607 @default.
- W3025113607 hasPrimaryLocation W30251136071 @default.
- W3025113607 hasRelatedWork W2773120646 @default.
- W3025113607 hasRelatedWork W3014300295 @default.
- W3025113607 hasRelatedWork W3164822677 @default.
- W3025113607 hasRelatedWork W3215138031 @default.
- W3025113607 hasRelatedWork W4223943233 @default.
- W3025113607 hasRelatedWork W4225161397 @default.
- W3025113607 hasRelatedWork W4250304930 @default.
- W3025113607 hasRelatedWork W4299487748 @default.
- W3025113607 hasRelatedWork W4309045103 @default.
- W3025113607 hasRelatedWork W4312200629 @default.
- W3025113607 hasVolume "63" @default.
- W3025113607 isParatext "false" @default.
- W3025113607 isRetracted "false" @default.
- W3025113607 magId "3025113607" @default.
- W3025113607 workType "article" @default.