Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025121970> ?p ?o ?g. }
- W3025121970 endingPage "106151" @default.
- W3025121970 startingPage "106151" @default.
- W3025121970 abstract "In this paper, we propose a new algorithm based on deep learning to reduce the speckle noise for coherent imaging without clean data. By learning the common information, namely the clean image, from paired noisy holographic reconstructed images, the noise reduction mechanism of the system can be obtained. Unlike normal deep learning methods, our algorithm does not require prior knowledge of clean object distribution. Experimental results show that noise removal effect of proposed method is better than traditional smoothing algorithms and can be comparable to the existed deep learning method trained with clean data." @default.
- W3025121970 created "2020-05-21" @default.
- W3025121970 creator A5000718052 @default.
- W3025121970 creator A5033136096 @default.
- W3025121970 creator A5038337382 @default.
- W3025121970 creator A5038819595 @default.
- W3025121970 creator A5052134746 @default.
- W3025121970 creator A5055460595 @default.
- W3025121970 creator A5062526798 @default.
- W3025121970 creator A5071604321 @default.
- W3025121970 date "2020-10-01" @default.
- W3025121970 modified "2023-10-06" @default.
- W3025121970 title "Speckle noise reduction in coherent imaging based on deep learning without clean data" @default.
- W3025121970 cites W1901129140 @default.
- W3025121970 cites W1966931096 @default.
- W3025121970 cites W1975357995 @default.
- W3025121970 cites W1985246926 @default.
- W3025121970 cites W1998247366 @default.
- W3025121970 cites W2025356990 @default.
- W3025121970 cites W2036593613 @default.
- W3025121970 cites W2046264871 @default.
- W3025121970 cites W2060385278 @default.
- W3025121970 cites W2086524049 @default.
- W3025121970 cites W2102053991 @default.
- W3025121970 cites W2111485637 @default.
- W3025121970 cites W2120882172 @default.
- W3025121970 cites W2464105557 @default.
- W3025121970 cites W2517447212 @default.
- W3025121970 cites W2612688942 @default.
- W3025121970 cites W2614949728 @default.
- W3025121970 cites W2648289572 @default.
- W3025121970 cites W2725499701 @default.
- W3025121970 cites W2734358244 @default.
- W3025121970 cites W2787020583 @default.
- W3025121970 cites W2888054313 @default.
- W3025121970 cites W2888832887 @default.
- W3025121970 cites W2898534759 @default.
- W3025121970 cites W2907716704 @default.
- W3025121970 cites W2955079933 @default.
- W3025121970 cites W2998163245 @default.
- W3025121970 cites W3099445761 @default.
- W3025121970 cites W3102127550 @default.
- W3025121970 doi "https://doi.org/10.1016/j.optlaseng.2020.106151" @default.
- W3025121970 hasPublicationYear "2020" @default.
- W3025121970 type Work @default.
- W3025121970 sameAs 3025121970 @default.
- W3025121970 citedByCount "16" @default.
- W3025121970 countsByYear W30251219702020 @default.
- W3025121970 countsByYear W30251219702021 @default.
- W3025121970 countsByYear W30251219702022 @default.
- W3025121970 countsByYear W30251219702023 @default.
- W3025121970 crossrefType "journal-article" @default.
- W3025121970 hasAuthorship W3025121970A5000718052 @default.
- W3025121970 hasAuthorship W3025121970A5033136096 @default.
- W3025121970 hasAuthorship W3025121970A5038337382 @default.
- W3025121970 hasAuthorship W3025121970A5038819595 @default.
- W3025121970 hasAuthorship W3025121970A5052134746 @default.
- W3025121970 hasAuthorship W3025121970A5055460595 @default.
- W3025121970 hasAuthorship W3025121970A5062526798 @default.
- W3025121970 hasAuthorship W3025121970A5071604321 @default.
- W3025121970 hasConcept C102290492 @default.
- W3025121970 hasConcept C108583219 @default.
- W3025121970 hasConcept C111335779 @default.
- W3025121970 hasConcept C115961682 @default.
- W3025121970 hasConcept C153180895 @default.
- W3025121970 hasConcept C154945302 @default.
- W3025121970 hasConcept C163294075 @default.
- W3025121970 hasConcept C180940675 @default.
- W3025121970 hasConcept C2524010 @default.
- W3025121970 hasConcept C31972630 @default.
- W3025121970 hasConcept C33923547 @default.
- W3025121970 hasConcept C3770464 @default.
- W3025121970 hasConcept C41008148 @default.
- W3025121970 hasConcept C99498987 @default.
- W3025121970 hasConceptScore W3025121970C102290492 @default.
- W3025121970 hasConceptScore W3025121970C108583219 @default.
- W3025121970 hasConceptScore W3025121970C111335779 @default.
- W3025121970 hasConceptScore W3025121970C115961682 @default.
- W3025121970 hasConceptScore W3025121970C153180895 @default.
- W3025121970 hasConceptScore W3025121970C154945302 @default.
- W3025121970 hasConceptScore W3025121970C163294075 @default.
- W3025121970 hasConceptScore W3025121970C180940675 @default.
- W3025121970 hasConceptScore W3025121970C2524010 @default.
- W3025121970 hasConceptScore W3025121970C31972630 @default.
- W3025121970 hasConceptScore W3025121970C33923547 @default.
- W3025121970 hasConceptScore W3025121970C3770464 @default.
- W3025121970 hasConceptScore W3025121970C41008148 @default.
- W3025121970 hasConceptScore W3025121970C99498987 @default.
- W3025121970 hasFunder F4320321001 @default.
- W3025121970 hasLocation W30251219701 @default.
- W3025121970 hasOpenAccess W3025121970 @default.
- W3025121970 hasPrimaryLocation W30251219701 @default.
- W3025121970 hasRelatedWork W2009515962 @default.
- W3025121970 hasRelatedWork W2013666342 @default.
- W3025121970 hasRelatedWork W2036778696 @default.
- W3025121970 hasRelatedWork W2037709109 @default.
- W3025121970 hasRelatedWork W2038655545 @default.
- W3025121970 hasRelatedWork W2113469682 @default.