Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025149098> ?p ?o ?g. }
- W3025149098 endingPage "119661" @default.
- W3025149098 startingPage "119661" @default.
- W3025149098 abstract "Abstract Passive carbon mineralization in ultramafic mining residues, which allows the sequestration of CO2 through carbonate precipitation, is one of the options being considered to limit the accumulation of anthropogenic CO2 in the atmosphere. The Dumont Nickel Project (DNP) will generate approximately 1.7 Gt of utramafic mining residues over 33 years of production and the mine will release about 127,700 tonnes of CO2 each year. Using two experimental cells filled with ultramafic waste rock (EC-1) and milling residues (EC-2), the impacts of carbon mineralization on leachate water quality were studied and the quantity of sequestered carbon was estimated. Hydrotalcite supergroup minerals, aragonite, artinite, nesquehonite, dypingite and hydromagnesite precipitated through atmospheric weathering, while the inorganic carbon content of the weathered mining waste increased from 0.1 wt% to 4.0 wt%, which indicates active CO2 sequestration. The leachate water, sampled at the bottom of the experimental cells, is characterized by an alkaline pH (~9.5), a high alkalinity (~90 to ~750 mg/L) and a high concentration of magnesium (~50–~750 mg/L), which is typical from weathering of ultramafic rocks in a system open to CO2. Since 2012, the chemical composition of the leachate water has evolved seasonally. These seasonal variations are best explained by: (1) climatic variations over the year and, (2) increased carbonate precipitation between May and July. Increased carbonate precipitation decreased the alkalinity and magnesium concentrations in the leachate water and produced pore waters which were undersaturated with respect to carbonate minerals such as artinite and hydromagnesite. Carbonate precipitation thus self-limits carbon sequestration through a negative feed-back loop. The carbon sequestration potential of the DNP residues is also influenced by the hydrogeological properties of the residues. In cell EC-2, a high liquid/solid ratio, which limits carbonate precipitation, was maintained by the hydrogeological properties. Since 2011, an estimate of 13 kg of atmospheric CO2 has been sequestered in the milling residues (EC-2), which corresponds to a mean rate of 1.4 (±0.3) kgCO2/tonne/year. Using this mean rate, the 15 Mt of tailings produced each year, during the planned 33 years of mining operation, could potentially sequester 21,000 tonnes of CO2 per year by passive carbon mineralization, about 16% of the 127,700 tonnes of CO2 annually emitted by the planned mining operation." @default.
- W3025149098 created "2020-05-21" @default.
- W3025149098 creator A5004399285 @default.
- W3025149098 creator A5025033630 @default.
- W3025149098 creator A5085515280 @default.
- W3025149098 creator A5090352242 @default.
- W3025149098 date "2020-07-01" @default.
- W3025149098 modified "2023-09-29" @default.
- W3025149098 title "Atmospheric carbon sequestration in ultramafic mining residues and impacts on leachate water chemistry at the Dumont Nickel Project, Quebec, Canada" @default.
- W3025149098 cites W166619974 @default.
- W3025149098 cites W1963965807 @default.
- W3025149098 cites W1964558195 @default.
- W3025149098 cites W1966260411 @default.
- W3025149098 cites W1966878594 @default.
- W3025149098 cites W1967557681 @default.
- W3025149098 cites W1969455419 @default.
- W3025149098 cites W1978277543 @default.
- W3025149098 cites W1996717961 @default.
- W3025149098 cites W1999747939 @default.
- W3025149098 cites W2001143037 @default.
- W3025149098 cites W2003798627 @default.
- W3025149098 cites W2007137330 @default.
- W3025149098 cites W2008587428 @default.
- W3025149098 cites W2015661959 @default.
- W3025149098 cites W2016765179 @default.
- W3025149098 cites W2018050219 @default.
- W3025149098 cites W2022216942 @default.
- W3025149098 cites W2030506772 @default.
- W3025149098 cites W2032439316 @default.
- W3025149098 cites W2033771275 @default.
- W3025149098 cites W2037134409 @default.
- W3025149098 cites W2037180886 @default.
- W3025149098 cites W2041360761 @default.
- W3025149098 cites W2042016445 @default.
- W3025149098 cites W2043097350 @default.
- W3025149098 cites W2043499504 @default.
- W3025149098 cites W2047104285 @default.
- W3025149098 cites W2047390327 @default.
- W3025149098 cites W2050339905 @default.
- W3025149098 cites W2062834819 @default.
- W3025149098 cites W2069495732 @default.
- W3025149098 cites W2071768555 @default.
- W3025149098 cites W2072501578 @default.
- W3025149098 cites W2076277527 @default.
- W3025149098 cites W2077670777 @default.
- W3025149098 cites W2082161497 @default.
- W3025149098 cites W2082584811 @default.
- W3025149098 cites W2091160252 @default.
- W3025149098 cites W2096661048 @default.
- W3025149098 cites W2102735659 @default.
- W3025149098 cites W2104664138 @default.
- W3025149098 cites W2107380728 @default.
- W3025149098 cites W2114748422 @default.
- W3025149098 cites W2120895581 @default.
- W3025149098 cites W2136587212 @default.
- W3025149098 cites W2140739065 @default.
- W3025149098 cites W2156641735 @default.
- W3025149098 cites W2157745353 @default.
- W3025149098 cites W2160468086 @default.
- W3025149098 cites W2163674833 @default.
- W3025149098 cites W2197014084 @default.
- W3025149098 cites W2231685648 @default.
- W3025149098 cites W2252636846 @default.
- W3025149098 cites W2271612146 @default.
- W3025149098 cites W2301516029 @default.
- W3025149098 cites W2316596994 @default.
- W3025149098 cites W2317583729 @default.
- W3025149098 cites W2320021862 @default.
- W3025149098 cites W2324614750 @default.
- W3025149098 cites W2324921384 @default.
- W3025149098 cites W2325449305 @default.
- W3025149098 cites W2326806776 @default.
- W3025149098 cites W2342723693 @default.
- W3025149098 cites W2474850458 @default.
- W3025149098 cites W2568341043 @default.
- W3025149098 cites W2597356166 @default.
- W3025149098 cites W2598966759 @default.
- W3025149098 cites W2605525143 @default.
- W3025149098 cites W2611150105 @default.
- W3025149098 cites W2621070700 @default.
- W3025149098 cites W2733358480 @default.
- W3025149098 cites W2735703586 @default.
- W3025149098 cites W2750077474 @default.
- W3025149098 cites W2900917559 @default.
- W3025149098 cites W4245300726 @default.
- W3025149098 doi "https://doi.org/10.1016/j.chemgeo.2020.119661" @default.
- W3025149098 hasPublicationYear "2020" @default.
- W3025149098 type Work @default.
- W3025149098 sameAs 3025149098 @default.
- W3025149098 citedByCount "9" @default.
- W3025149098 countsByYear W30251490982021 @default.
- W3025149098 countsByYear W30251490982022 @default.
- W3025149098 countsByYear W30251490982023 @default.
- W3025149098 crossrefType "journal-article" @default.
- W3025149098 hasAuthorship W3025149098A5004399285 @default.
- W3025149098 hasAuthorship W3025149098A5025033630 @default.
- W3025149098 hasAuthorship W3025149098A5085515280 @default.
- W3025149098 hasAuthorship W3025149098A5090352242 @default.