Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025156977> ?p ?o ?g. }
- W3025156977 endingPage "113501" @default.
- W3025156977 startingPage "113501" @default.
- W3025156977 abstract "Recent improvements in deep learning radiomics (DLR) extracting high-level features form medical imaging could promote the performance of computer aided diagnosis (CAD) for cancer. Breast cancer is the most frequent cancer among women and prospective achievements have been reported by CAD systems based on deep learning methods for breast imaging. In this paper, we aim to provide a comprehensive overview of the recent research efforts on DLR in breast cancer with different modalities and propose the future directions in this field. First, we respectively summarize and analyze the dataset, architecture, application and evaluation on DLR for breast cancer with three main imaging modalities, i.e., ultrasound, mammography, magnetic resonance imaging. Especially, we provide a survey on deep learning architectures exploited in breast cancer, including discriminative architectures and generative architectures. Then, we propose some potential challenges along with future research directions as references to the clinical treatment management and decision making utilizing such breast cancer CAD systems." @default.
- W3025156977 created "2020-05-21" @default.
- W3025156977 creator A5028404344 @default.
- W3025156977 creator A5056646841 @default.
- W3025156977 creator A5070805897 @default.
- W3025156977 creator A5073594519 @default.
- W3025156977 date "2020-11-01" @default.
- W3025156977 modified "2023-10-06" @default.
- W3025156977 title "Deep learning radiomics in breast cancer with different modalities: Overview and future" @default.
- W3025156977 cites W1973445088 @default.
- W3025156977 cites W1976045444 @default.
- W3025156977 cites W1998865404 @default.
- W3025156977 cites W2016589492 @default.
- W3025156977 cites W2042809940 @default.
- W3025156977 cites W2051782002 @default.
- W3025156977 cites W2064675550 @default.
- W3025156977 cites W2070644180 @default.
- W3025156977 cites W2083856558 @default.
- W3025156977 cites W2086268663 @default.
- W3025156977 cites W2101771332 @default.
- W3025156977 cites W2107726111 @default.
- W3025156977 cites W2124653673 @default.
- W3025156977 cites W2128739912 @default.
- W3025156977 cites W2133911584 @default.
- W3025156977 cites W2135118182 @default.
- W3025156977 cites W2137028359 @default.
- W3025156977 cites W2143559692 @default.
- W3025156977 cites W2157687887 @default.
- W3025156977 cites W2171751663 @default.
- W3025156977 cites W2174661749 @default.
- W3025156977 cites W2180748755 @default.
- W3025156977 cites W2190746225 @default.
- W3025156977 cites W2199497824 @default.
- W3025156977 cites W2200566924 @default.
- W3025156977 cites W2216351247 @default.
- W3025156977 cites W2240965754 @default.
- W3025156977 cites W2253429366 @default.
- W3025156977 cites W2295256730 @default.
- W3025156977 cites W2299565249 @default.
- W3025156977 cites W2338271170 @default.
- W3025156977 cites W2341106171 @default.
- W3025156977 cites W2345010043 @default.
- W3025156977 cites W2409650203 @default.
- W3025156977 cites W2412479940 @default.
- W3025156977 cites W2436993881 @default.
- W3025156977 cites W2472971850 @default.
- W3025156977 cites W2493683088 @default.
- W3025156977 cites W2510224130 @default.
- W3025156977 cites W2580480204 @default.
- W3025156977 cites W2581082771 @default.
- W3025156977 cites W2592929672 @default.
- W3025156977 cites W2595221342 @default.
- W3025156977 cites W2605960745 @default.
- W3025156977 cites W2606915180 @default.
- W3025156977 cites W2740028789 @default.
- W3025156977 cites W2743635406 @default.
- W3025156977 cites W2750925197 @default.
- W3025156977 cites W2755806371 @default.
- W3025156977 cites W2756182389 @default.
- W3025156977 cites W2765811365 @default.
- W3025156977 cites W2767016695 @default.
- W3025156977 cites W2773642388 @default.
- W3025156977 cites W2783466344 @default.
- W3025156977 cites W2792379403 @default.
- W3025156977 cites W2793701907 @default.
- W3025156977 cites W2793956967 @default.
- W3025156977 cites W2794622599 @default.
- W3025156977 cites W2805105654 @default.
- W3025156977 cites W2807190811 @default.
- W3025156977 cites W2809348156 @default.
- W3025156977 cites W2864627177 @default.
- W3025156977 cites W2884833628 @default.
- W3025156977 cites W2888646712 @default.
- W3025156977 cites W2890136754 @default.
- W3025156977 cites W2897240599 @default.
- W3025156977 cites W2897490102 @default.
- W3025156977 cites W2898373323 @default.
- W3025156977 cites W2898898617 @default.
- W3025156977 cites W2900144270 @default.
- W3025156977 cites W2900955936 @default.
- W3025156977 cites W2902871392 @default.
- W3025156977 cites W2903193238 @default.
- W3025156977 cites W2904730732 @default.
- W3025156977 cites W2906785117 @default.
- W3025156977 cites W2907279673 @default.
- W3025156977 cites W2909596719 @default.
- W3025156977 cites W2914675314 @default.
- W3025156977 cites W2914821433 @default.
- W3025156977 cites W2915020432 @default.
- W3025156977 cites W2917364154 @default.
- W3025156977 cites W2919115771 @default.
- W3025156977 cites W2921877691 @default.
- W3025156977 cites W2922358453 @default.
- W3025156977 cites W3006463225 @default.
- W3025156977 cites W304373761 @default.
- W3025156977 cites W3098234188 @default.
- W3025156977 cites W3106266685 @default.
- W3025156977 doi "https://doi.org/10.1016/j.eswa.2020.113501" @default.