Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025175085> ?p ?o ?g. }
- W3025175085 endingPage "91212" @default.
- W3025175085 startingPage "91188" @default.
- W3025175085 abstract "Deep learning-based techniques are the state of the art in road traffic prediction or forecasting. Several deep neural networks have been proposed to predict the traffic but they have not been evaluated under common datasets. Current studies analyze their capacity to predict road traffic in general but do not focus on their capacity to predict the formation of congestions. This is critical for avoiding congestions or mitigate their negative impact. This paper progresses the current state of the art by presenting a comprehensive comparison of the state-of-the-art deep neural networks for road traffic prediction. The comparison is conducted using the same real traffic datasets, and under normal and congested traffic conditions. The evaluation includes new deep neural networks and error recurrent models. Our study first demonstrates that accurately predicting the traffic overall does not imply that a deep neural network can accurately predict the traffic when congestions are being formed. This reinforces the idea that prediction techniques must also be evaluated under congestion conditions. Our analysis also shows that exploiting the spatiotemporal evolution of the traffic (and not just the temporal one) provides better prediction accuracy overall and in particular under congestion conditions. The study also demonstrates that error recurrent models outperform deep neural networks that do not utilize an error feedback both under normal and congested traffic conditions. In particular, our study shows that the error recurrent model eRCNN is the deep learning technique that achieves to date the best traffic prediction accuracy. It is also important emphasizing that error recurrent models achieve better prediction accuracy with shallower neural networks and therefore lower computational cost." @default.
- W3025175085 created "2020-05-21" @default.
- W3025175085 creator A5077796279 @default.
- W3025175085 creator A5090098484 @default.
- W3025175085 date "2020-01-01" @default.
- W3025175085 modified "2023-10-01" @default.
- W3025175085 title "A Comprehensive Evaluation of Deep Learning-Based Techniques for Traffic Prediction" @default.
- W3025175085 cites W1529430712 @default.
- W3025175085 cites W179875071 @default.
- W3025175085 cites W1895577753 @default.
- W3025175085 cites W1947481528 @default.
- W3025175085 cites W1973943669 @default.
- W3025175085 cites W1983483726 @default.
- W3025175085 cites W1988489815 @default.
- W3025175085 cites W2004353783 @default.
- W3025175085 cites W2007272376 @default.
- W3025175085 cites W2008483594 @default.
- W3025175085 cites W2040297119 @default.
- W3025175085 cites W2064675550 @default.
- W3025175085 cites W2073209910 @default.
- W3025175085 cites W2090717427 @default.
- W3025175085 cites W2106110155 @default.
- W3025175085 cites W2107878631 @default.
- W3025175085 cites W2111991989 @default.
- W3025175085 cites W2112796928 @default.
- W3025175085 cites W2143612262 @default.
- W3025175085 cites W215839325 @default.
- W3025175085 cites W2168791259 @default.
- W3025175085 cites W2183341477 @default.
- W3025175085 cites W2194775991 @default.
- W3025175085 cites W2533328922 @default.
- W3025175085 cites W2552464054 @default.
- W3025175085 cites W2573587735 @default.
- W3025175085 cites W2579495707 @default.
- W3025175085 cites W2583466634 @default.
- W3025175085 cites W2613331518 @default.
- W3025175085 cites W2619995677 @default.
- W3025175085 cites W2734777338 @default.
- W3025175085 cites W2741089866 @default.
- W3025175085 cites W2756795320 @default.
- W3025175085 cites W2792440155 @default.
- W3025175085 cites W2884604806 @default.
- W3025175085 cites W2894821558 @default.
- W3025175085 cites W2895979207 @default.
- W3025175085 cites W2896326353 @default.
- W3025175085 cites W2910115723 @default.
- W3025175085 cites W2916752133 @default.
- W3025175085 cites W2945177784 @default.
- W3025175085 cites W2956324374 @default.
- W3025175085 cites W2963995014 @default.
- W3025175085 cites W2964081807 @default.
- W3025175085 cites W3103720336 @default.
- W3025175085 cites W322862721 @default.
- W3025175085 cites W1976333578 @default.
- W3025175085 doi "https://doi.org/10.1109/access.2020.2994415" @default.
- W3025175085 hasPublicationYear "2020" @default.
- W3025175085 type Work @default.
- W3025175085 sameAs 3025175085 @default.
- W3025175085 citedByCount "19" @default.
- W3025175085 countsByYear W30251750852020 @default.
- W3025175085 countsByYear W30251750852021 @default.
- W3025175085 countsByYear W30251750852022 @default.
- W3025175085 countsByYear W30251750852023 @default.
- W3025175085 crossrefType "journal-article" @default.
- W3025175085 hasAuthorship W3025175085A5077796279 @default.
- W3025175085 hasAuthorship W3025175085A5090098484 @default.
- W3025175085 hasBestOaLocation W30251750851 @default.
- W3025175085 hasConcept C108583219 @default.
- W3025175085 hasConcept C119857082 @default.
- W3025175085 hasConcept C120665830 @default.
- W3025175085 hasConcept C121332964 @default.
- W3025175085 hasConcept C124101348 @default.
- W3025175085 hasConcept C127413603 @default.
- W3025175085 hasConcept C147168706 @default.
- W3025175085 hasConcept C154945302 @default.
- W3025175085 hasConcept C167085575 @default.
- W3025175085 hasConcept C176715033 @default.
- W3025175085 hasConcept C192209626 @default.
- W3025175085 hasConcept C22212356 @default.
- W3025175085 hasConcept C2779888511 @default.
- W3025175085 hasConcept C2984842247 @default.
- W3025175085 hasConcept C41008148 @default.
- W3025175085 hasConcept C45804977 @default.
- W3025175085 hasConcept C50644808 @default.
- W3025175085 hasConcept C79403827 @default.
- W3025175085 hasConceptScore W3025175085C108583219 @default.
- W3025175085 hasConceptScore W3025175085C119857082 @default.
- W3025175085 hasConceptScore W3025175085C120665830 @default.
- W3025175085 hasConceptScore W3025175085C121332964 @default.
- W3025175085 hasConceptScore W3025175085C124101348 @default.
- W3025175085 hasConceptScore W3025175085C127413603 @default.
- W3025175085 hasConceptScore W3025175085C147168706 @default.
- W3025175085 hasConceptScore W3025175085C154945302 @default.
- W3025175085 hasConceptScore W3025175085C167085575 @default.
- W3025175085 hasConceptScore W3025175085C176715033 @default.
- W3025175085 hasConceptScore W3025175085C192209626 @default.
- W3025175085 hasConceptScore W3025175085C22212356 @default.
- W3025175085 hasConceptScore W3025175085C2779888511 @default.