Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025193887> ?p ?o ?g. }
- W3025193887 endingPage "546" @default.
- W3025193887 startingPage "538" @default.
- W3025193887 abstract "Medusahead is an aggressive, winter annual that is of dire concern for the health and sustainability of western rangelands in the United States. Medusahead reduces plant diversity, alters ecosystem function, and reduces carrying capacities for both livestock and wildlife. The species has competitive advantages over cheatgrass and native grasses that causes an increased amount of fine fuels deposited on western rangelands. The Channeled Scablands of eastern Washington in the United States represent a typical example of a region being challenged by the expansion of this weed. The costs of the invasion are high and financial constraints can limit successful management. Managers need the ability to identify medusahead across entire landscapes, so they can work towards effective and efficient management approaches. Remote sensing offers the ability to measure vegetation cover at large spatial scales, which can lead to a better understanding of the invasive characteristics of problematic species like medusahead. For instance, research has been successful in creating large-scale distribution maps of cheatgrass over western rangelands. Many applications rely on the phenological characteristics of a target plant which can present problems in separating two species with similar phenologies (i.e. cheatgrass & medusahead). A medusahead-specific map gives managers the flexibility to prioritize and direct management needs when attempting to control the spread of medusahead into non-invaded areas. This study integrated GPS acquired field locations from three study sites (Sites S, C, & N) and imagery from two remote sensing platforms (1-m aerial imagery & 30-m Landsat), to model and predict fractional cover of medusahead over 37,000+ ha of rangelands in the Channeled Scabland region of eastern Washington. Using a multi-scaled approach, this research showed that regression tree algorithms can model the complex spectral response of senesced medusahead using late summer Landsat scenes. The predictive performances resulted in a R2 of 0.80 near the model's training site (Site S) and an average R2 of 0.68 away from the training site (Sites C & N). This research provides a non-phenological approach to produce accurate large-scale, distribution maps of medusahead which can aid land managers who are challenged by its invasion." @default.
- W3025193887 created "2020-05-21" @default.
- W3025193887 creator A5007871577 @default.
- W3025193887 creator A5010129158 @default.
- W3025193887 creator A5049179294 @default.
- W3025193887 creator A5053192394 @default.
- W3025193887 date "2020-07-01" @default.
- W3025193887 modified "2023-09-29" @default.
- W3025193887 title "A Multi-Scale Approach to Predict the Fractional Cover of Medusahead (Taeniatherum Caput-Medusae)" @default.
- W3025193887 cites W1169477315 @default.
- W3025193887 cites W1279013735 @default.
- W3025193887 cites W1976734386 @default.
- W3025193887 cites W1980349018 @default.
- W3025193887 cites W1987064663 @default.
- W3025193887 cites W1996721947 @default.
- W3025193887 cites W2005156666 @default.
- W3025193887 cites W2018779310 @default.
- W3025193887 cites W2032164272 @default.
- W3025193887 cites W2043962305 @default.
- W3025193887 cites W2069358120 @default.
- W3025193887 cites W2070493638 @default.
- W3025193887 cites W2090282990 @default.
- W3025193887 cites W2102128253 @default.
- W3025193887 cites W2105497328 @default.
- W3025193887 cites W2114664807 @default.
- W3025193887 cites W2117456634 @default.
- W3025193887 cites W2118432446 @default.
- W3025193887 cites W2119945781 @default.
- W3025193887 cites W2120441014 @default.
- W3025193887 cites W2128258872 @default.
- W3025193887 cites W2129957199 @default.
- W3025193887 cites W2131597826 @default.
- W3025193887 cites W2142950171 @default.
- W3025193887 cites W2149108613 @default.
- W3025193887 cites W2151699400 @default.
- W3025193887 cites W2153860230 @default.
- W3025193887 cites W2157438291 @default.
- W3025193887 cites W2170577788 @default.
- W3025193887 cites W2177299793 @default.
- W3025193887 cites W2205055121 @default.
- W3025193887 cites W2238633436 @default.
- W3025193887 cites W2255145075 @default.
- W3025193887 cites W2795797217 @default.
- W3025193887 cites W79081734 @default.
- W3025193887 doi "https://doi.org/10.1016/j.rama.2020.04.006" @default.
- W3025193887 hasPublicationYear "2020" @default.
- W3025193887 type Work @default.
- W3025193887 sameAs 3025193887 @default.
- W3025193887 citedByCount "4" @default.
- W3025193887 countsByYear W30251938872021 @default.
- W3025193887 countsByYear W30251938872022 @default.
- W3025193887 countsByYear W30251938872023 @default.
- W3025193887 crossrefType "journal-article" @default.
- W3025193887 hasAuthorship W3025193887A5007871577 @default.
- W3025193887 hasAuthorship W3025193887A5010129158 @default.
- W3025193887 hasAuthorship W3025193887A5049179294 @default.
- W3025193887 hasAuthorship W3025193887A5053192394 @default.
- W3025193887 hasConcept C107826830 @default.
- W3025193887 hasConcept C130989795 @default.
- W3025193887 hasConcept C136020623 @default.
- W3025193887 hasConcept C142724271 @default.
- W3025193887 hasConcept C150117547 @default.
- W3025193887 hasConcept C18903297 @default.
- W3025193887 hasConcept C205649164 @default.
- W3025193887 hasConcept C2776133958 @default.
- W3025193887 hasConcept C2776278397 @default.
- W3025193887 hasConcept C2776851100 @default.
- W3025193887 hasConcept C2778755073 @default.
- W3025193887 hasConcept C29376679 @default.
- W3025193887 hasConcept C39432304 @default.
- W3025193887 hasConcept C54286561 @default.
- W3025193887 hasConcept C58640448 @default.
- W3025193887 hasConcept C62649853 @default.
- W3025193887 hasConcept C71924100 @default.
- W3025193887 hasConcept C86803240 @default.
- W3025193887 hasConceptScore W3025193887C107826830 @default.
- W3025193887 hasConceptScore W3025193887C130989795 @default.
- W3025193887 hasConceptScore W3025193887C136020623 @default.
- W3025193887 hasConceptScore W3025193887C142724271 @default.
- W3025193887 hasConceptScore W3025193887C150117547 @default.
- W3025193887 hasConceptScore W3025193887C18903297 @default.
- W3025193887 hasConceptScore W3025193887C205649164 @default.
- W3025193887 hasConceptScore W3025193887C2776133958 @default.
- W3025193887 hasConceptScore W3025193887C2776278397 @default.
- W3025193887 hasConceptScore W3025193887C2776851100 @default.
- W3025193887 hasConceptScore W3025193887C2778755073 @default.
- W3025193887 hasConceptScore W3025193887C29376679 @default.
- W3025193887 hasConceptScore W3025193887C39432304 @default.
- W3025193887 hasConceptScore W3025193887C54286561 @default.
- W3025193887 hasConceptScore W3025193887C58640448 @default.
- W3025193887 hasConceptScore W3025193887C62649853 @default.
- W3025193887 hasConceptScore W3025193887C71924100 @default.
- W3025193887 hasConceptScore W3025193887C86803240 @default.
- W3025193887 hasFunder F4320308937 @default.
- W3025193887 hasFunder F4320309593 @default.
- W3025193887 hasIssue "4" @default.
- W3025193887 hasLocation W30251938871 @default.
- W3025193887 hasOpenAccess W3025193887 @default.