Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025262802> ?p ?o ?g. }
- W3025262802 abstract "People usually take short videos to record meaningful moments in their lives. However, selecting the most representative frame, which not only has high image visual quality but also captures video content, from a short video to share or keep is a time-consuming process for one may need to manually go through all the frames in a video to make a decision. In this paper, we introduce the problem of the best frame selection in a short video and aim to solve it automatically. Towards this end, we collect and will release a diverse large-scale short video dataset that includes 11, 000 videos shoot in our daily life. All videos are assumed to be short (e.g., a few seconds) and each video has human-annotated of the best frame. Then we introduce a deep convolutional neural network (CNN) based approach with ranking objective to automatically pick the best frame from frame sequences extracted via short videos. Additionally, we propose new evaluation metrics, especially for the best frame selection. In experiments, we show our approach outperforms various other methods significantly." @default.
- W3025262802 created "2020-05-21" @default.
- W3025262802 creator A5024456511 @default.
- W3025262802 creator A5047385834 @default.
- W3025262802 creator A5060956547 @default.
- W3025262802 creator A5062117019 @default.
- W3025262802 date "2020-03-01" @default.
- W3025262802 modified "2023-10-18" @default.
- W3025262802 title "Best Frame Selection in a Short Video" @default.
- W3025262802 cites W1598774275 @default.
- W3025262802 cites W1934410531 @default.
- W3025262802 cites W1981572319 @default.
- W3025262802 cites W1987366351 @default.
- W3025262802 cites W2007685793 @default.
- W3025262802 cites W2007773296 @default.
- W3025262802 cites W2009678853 @default.
- W3025262802 cites W2019658628 @default.
- W3025262802 cites W2030354032 @default.
- W3025262802 cites W2040141351 @default.
- W3025262802 cites W2078807908 @default.
- W3025262802 cites W2080754665 @default.
- W3025262802 cites W2088079435 @default.
- W3025262802 cites W2095233599 @default.
- W3025262802 cites W2096544166 @default.
- W3025262802 cites W2097117768 @default.
- W3025262802 cites W2103908291 @default.
- W3025262802 cites W2104915826 @default.
- W3025262802 cites W2109247023 @default.
- W3025262802 cites W2116208741 @default.
- W3025262802 cites W2120645068 @default.
- W3025262802 cites W2122429065 @default.
- W3025262802 cites W2139009685 @default.
- W3025262802 cites W2142013027 @default.
- W3025262802 cites W2151009539 @default.
- W3025262802 cites W2157364932 @default.
- W3025262802 cites W2158155099 @default.
- W3025262802 cites W2165107586 @default.
- W3025262802 cites W2194345886 @default.
- W3025262802 cites W2203368333 @default.
- W3025262802 cites W2217895792 @default.
- W3025262802 cites W2417288846 @default.
- W3025262802 cites W2441740088 @default.
- W3025262802 cites W2463801705 @default.
- W3025262802 cites W2467794422 @default.
- W3025262802 cites W2512435841 @default.
- W3025262802 cites W2529272619 @default.
- W3025262802 cites W2586372171 @default.
- W3025262802 cites W2604274373 @default.
- W3025262802 cites W2737677090 @default.
- W3025262802 cites W2779483295 @default.
- W3025262802 cites W2798986039 @default.
- W3025262802 cites W2963220254 @default.
- W3025262802 cites W2963919999 @default.
- W3025262802 cites W3098465165 @default.
- W3025262802 doi "https://doi.org/10.1109/wacv45572.2020.9093615" @default.
- W3025262802 hasPublicationYear "2020" @default.
- W3025262802 type Work @default.
- W3025262802 sameAs 3025262802 @default.
- W3025262802 citedByCount "14" @default.
- W3025262802 countsByYear W30252628022019 @default.
- W3025262802 countsByYear W30252628022020 @default.
- W3025262802 countsByYear W30252628022021 @default.
- W3025262802 countsByYear W30252628022022 @default.
- W3025262802 countsByYear W30252628022023 @default.
- W3025262802 crossrefType "proceedings-article" @default.
- W3025262802 hasAuthorship W3025262802A5024456511 @default.
- W3025262802 hasAuthorship W3025262802A5047385834 @default.
- W3025262802 hasAuthorship W3025262802A5060956547 @default.
- W3025262802 hasAuthorship W3025262802A5062117019 @default.
- W3025262802 hasConcept C126042441 @default.
- W3025262802 hasConcept C154945302 @default.
- W3025262802 hasConcept C189430467 @default.
- W3025262802 hasConcept C31972630 @default.
- W3025262802 hasConcept C41008148 @default.
- W3025262802 hasConcept C76155785 @default.
- W3025262802 hasConcept C81363708 @default.
- W3025262802 hasConcept C81917197 @default.
- W3025262802 hasConceptScore W3025262802C126042441 @default.
- W3025262802 hasConceptScore W3025262802C154945302 @default.
- W3025262802 hasConceptScore W3025262802C189430467 @default.
- W3025262802 hasConceptScore W3025262802C31972630 @default.
- W3025262802 hasConceptScore W3025262802C41008148 @default.
- W3025262802 hasConceptScore W3025262802C76155785 @default.
- W3025262802 hasConceptScore W3025262802C81363708 @default.
- W3025262802 hasConceptScore W3025262802C81917197 @default.
- W3025262802 hasLocation W30252628021 @default.
- W3025262802 hasOpenAccess W3025262802 @default.
- W3025262802 hasPrimaryLocation W30252628021 @default.
- W3025262802 hasRelatedWork W1891287906 @default.
- W3025262802 hasRelatedWork W1967456564 @default.
- W3025262802 hasRelatedWork W1969923398 @default.
- W3025262802 hasRelatedWork W2036807459 @default.
- W3025262802 hasRelatedWork W2080322084 @default.
- W3025262802 hasRelatedWork W2166024367 @default.
- W3025262802 hasRelatedWork W2772917594 @default.
- W3025262802 hasRelatedWork W2775347418 @default.
- W3025262802 hasRelatedWork W3181746755 @default.
- W3025262802 hasRelatedWork W4312095940 @default.
- W3025262802 isParatext "false" @default.
- W3025262802 isRetracted "false" @default.