Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025304814> ?p ?o ?g. }
- W3025304814 abstract "Prediction techniques based on data are applied in a broad range of applications such as bioinformatics, disease spread, and mobile intrusion detection, just to name a few. With the rapid emergence of on-line technologies numerous techniques for collecting and storing data for prediction-based analysis have been proposed in the literature. With the growing size of global population, the spread of epidemics is increasing at an alarming rate. Consequently, public and private health care officials are in a dire need of developing technological solutions for managing epidemics. Most of the existing syndromic surveillance and disease detection systems deal with a small portion of a real dataset. From the communication network perspective, the results reported in the literature generally deal with commonly known network topologies. Scalability of a disease detection system is a real challenge when it comes to modeling and predicting disease spread across a large population or large scale networks. In this dissertation, we address this challenge by proposing a hierarchical aggregation approach that classifies a dynamic disease spread phenomena at different scalability levels. Specifically, we present a finite state model (SEIR-FSM) for predicting disease spread, the model manifests itself into three different levels of data aggregation and accordingly makes prediction of disease spread at various scales. We present experimental results of this model for different disease spread behaviors on all levels of granularity. Subsequently, we present a mechanism for mapping the population interaction network model to a wireless mobile network topology. The objective is to analyze the phenomena of malware spread based on vulnerabilities. The goal is to develop and evaluate a wireless mobile intrusion detection system that uses a Hidden Markov model in connection with the FSM disease spread model (HMM-FSM). Subsequently, we propose a software-based architecture that acts as a network function virtualization (NFV) to combat malware spread in IoT based networks. Taking advantage of the NFV infrastructure's potential to provide new security solutions for IoT environments to combat malware attacks. We propose a scalable and generalized IDS that uses a Recurrent Neural Network Long Short Term Memory (RNN-LSTM) learning model for predicting malware attacks in a timely manner for the NFV to deploy the appropriate countermeasures. The analysis utilizes the susceptible (S), exposed (E), infected (I), and resistant (R) (SEIR) model to capture the dynamics of the spread of the malware attack and subsequently provide a patching mechanism for the network. Our analysis focuses primarily on the feasibility and the performance evaluation of the NFV RNN-LSTM proposed model." @default.
- W3025304814 created "2020-05-21" @default.
- W3025304814 creator A5029714594 @default.
- W3025304814 date "2020-05-18" @default.
- W3025304814 modified "2023-09-24" @default.
- W3025304814 title "Prediction of disease spread phenomena in large dynamic topology with application to malware detection in ad hoc networks" @default.
- W3025304814 cites W1489238133 @default.
- W3025304814 cites W1502922572 @default.
- W3025304814 cites W152318595 @default.
- W3025304814 cites W1560107318 @default.
- W3025304814 cites W1574556844 @default.
- W3025304814 cites W1586585362 @default.
- W3025304814 cites W1591078630 @default.
- W3025304814 cites W1610496399 @default.
- W3025304814 cites W1981530348 @default.
- W3025304814 cites W2000984098 @default.
- W3025304814 cites W2024097794 @default.
- W3025304814 cites W2038550366 @default.
- W3025304814 cites W2073627497 @default.
- W3025304814 cites W2090240240 @default.
- W3025304814 cites W2097025901 @default.
- W3025304814 cites W2101634779 @default.
- W3025304814 cites W2111580926 @default.
- W3025304814 cites W2120900307 @default.
- W3025304814 cites W2125838338 @default.
- W3025304814 cites W2128436420 @default.
- W3025304814 cites W2144981143 @default.
- W3025304814 cites W2145736592 @default.
- W3025304814 cites W2146185792 @default.
- W3025304814 cites W2162181963 @default.
- W3025304814 cites W2171924504 @default.
- W3025304814 cites W2335198014 @default.
- W3025304814 cites W2364553882 @default.
- W3025304814 cites W2521606069 @default.
- W3025304814 cites W2525133044 @default.
- W3025304814 cites W2568581969 @default.
- W3025304814 cites W2587634413 @default.
- W3025304814 cites W2608418534 @default.
- W3025304814 cites W2620763085 @default.
- W3025304814 cites W2754140476 @default.
- W3025304814 cites W2755588949 @default.
- W3025304814 cites W2786070938 @default.
- W3025304814 cites W2791879367 @default.
- W3025304814 cites W2895216609 @default.
- W3025304814 cites W2901760517 @default.
- W3025304814 cites W2906593223 @default.
- W3025304814 cites W2944360588 @default.
- W3025304814 cites W2963748489 @default.
- W3025304814 cites W3006006160 @default.
- W3025304814 cites W3099185017 @default.
- W3025304814 doi "https://doi.org/10.25394/pgs.12312200.v1" @default.
- W3025304814 hasPublicationYear "2020" @default.
- W3025304814 type Work @default.
- W3025304814 sameAs 3025304814 @default.
- W3025304814 citedByCount "0" @default.
- W3025304814 crossrefType "dissertation" @default.
- W3025304814 hasAuthorship W3025304814A5029714594 @default.
- W3025304814 hasConcept C119857082 @default.
- W3025304814 hasConcept C120314980 @default.
- W3025304814 hasConcept C124101348 @default.
- W3025304814 hasConcept C154945302 @default.
- W3025304814 hasConcept C199845137 @default.
- W3025304814 hasConcept C2908647359 @default.
- W3025304814 hasConcept C31258907 @default.
- W3025304814 hasConcept C38652104 @default.
- W3025304814 hasConcept C41008148 @default.
- W3025304814 hasConcept C48044578 @default.
- W3025304814 hasConcept C541664917 @default.
- W3025304814 hasConcept C555944384 @default.
- W3025304814 hasConcept C71924100 @default.
- W3025304814 hasConcept C76155785 @default.
- W3025304814 hasConcept C77088390 @default.
- W3025304814 hasConcept C91280400 @default.
- W3025304814 hasConcept C99454951 @default.
- W3025304814 hasConceptScore W3025304814C119857082 @default.
- W3025304814 hasConceptScore W3025304814C120314980 @default.
- W3025304814 hasConceptScore W3025304814C124101348 @default.
- W3025304814 hasConceptScore W3025304814C154945302 @default.
- W3025304814 hasConceptScore W3025304814C199845137 @default.
- W3025304814 hasConceptScore W3025304814C2908647359 @default.
- W3025304814 hasConceptScore W3025304814C31258907 @default.
- W3025304814 hasConceptScore W3025304814C38652104 @default.
- W3025304814 hasConceptScore W3025304814C41008148 @default.
- W3025304814 hasConceptScore W3025304814C48044578 @default.
- W3025304814 hasConceptScore W3025304814C541664917 @default.
- W3025304814 hasConceptScore W3025304814C555944384 @default.
- W3025304814 hasConceptScore W3025304814C71924100 @default.
- W3025304814 hasConceptScore W3025304814C76155785 @default.
- W3025304814 hasConceptScore W3025304814C77088390 @default.
- W3025304814 hasConceptScore W3025304814C91280400 @default.
- W3025304814 hasConceptScore W3025304814C99454951 @default.
- W3025304814 hasLocation W30253048141 @default.
- W3025304814 hasOpenAccess W3025304814 @default.
- W3025304814 hasPrimaryLocation W30253048141 @default.
- W3025304814 hasRelatedWork W2043041231 @default.
- W3025304814 hasRelatedWork W2092184335 @default.
- W3025304814 hasRelatedWork W2122475089 @default.
- W3025304814 hasRelatedWork W2133541152 @default.
- W3025304814 hasRelatedWork W2142812038 @default.
- W3025304814 hasRelatedWork W2163113903 @default.