Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025305737> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3025305737 endingPage "437" @default.
- W3025305737 startingPage "415" @default.
- W3025305737 abstract "Circular concrete filled steel tube (CFST) columns have an advantage over all other sections when they are used in compression members. This paper proposes a new approach for deriving a new empirical equation to predict the axial compressive capacity of circular CFST columns using the Artificial Neural Network (ANN). The developed ANN model uses 5 input parameters that include the diameter of circular steel tube, the length of the column, the thickness of steel tube, the steel yield strength and the compressive strength of concrete. The only output parameter is the axial compressive capacity. Training and testing the developed ANN model was carried out using 219 available sets of data collected from the experimental results in the literature. An empirical equation is then proposed as an important result of this study, which is practically used to predict the axial compressive capacity of a circular CFST column. To evaluate the performance of the developed ANN model and the proposed equation, the predicted results are compared with those of the empirical equations stated in the current design codes and other models. It is shown that the proposed equation can predict the axial compressive capacity of circular CFST columns more accurately than other methods. This is confirmed by the high accuracy of a large number of existing test results. Finally, the parametric study result is analyzed for the proposed ANN equation to consider the effect of the input parameters on axial compressive strength." @default.
- W3025305737 created "2020-05-21" @default.
- W3025305737 creator A5029463053 @default.
- W3025305737 creator A5073964441 @default.
- W3025305737 creator A5082744352 @default.
- W3025305737 date "2020-01-01" @default.
- W3025305737 modified "2023-09-27" @default.
- W3025305737 title "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network" @default.
- W3025305737 doi "https://doi.org/10.12989/scs.2020.35.3.415" @default.
- W3025305737 hasPublicationYear "2020" @default.
- W3025305737 type Work @default.
- W3025305737 sameAs 3025305737 @default.
- W3025305737 citedByCount "1" @default.
- W3025305737 countsByYear W30253057372022 @default.
- W3025305737 crossrefType "journal-article" @default.
- W3025305737 hasAuthorship W3025305737A5029463053 @default.
- W3025305737 hasAuthorship W3025305737A5073964441 @default.
- W3025305737 hasAuthorship W3025305737A5082744352 @default.
- W3025305737 hasConcept C105795698 @default.
- W3025305737 hasConcept C115903868 @default.
- W3025305737 hasConcept C117251300 @default.
- W3025305737 hasConcept C127413603 @default.
- W3025305737 hasConcept C13355873 @default.
- W3025305737 hasConcept C134121241 @default.
- W3025305737 hasConcept C154945302 @default.
- W3025305737 hasConcept C159985019 @default.
- W3025305737 hasConcept C16910744 @default.
- W3025305737 hasConcept C180016635 @default.
- W3025305737 hasConcept C192562407 @default.
- W3025305737 hasConcept C2777551473 @default.
- W3025305737 hasConcept C2780551164 @default.
- W3025305737 hasConcept C30407753 @default.
- W3025305737 hasConcept C33923547 @default.
- W3025305737 hasConcept C41008148 @default.
- W3025305737 hasConcept C50644808 @default.
- W3025305737 hasConcept C66938386 @default.
- W3025305737 hasConceptScore W3025305737C105795698 @default.
- W3025305737 hasConceptScore W3025305737C115903868 @default.
- W3025305737 hasConceptScore W3025305737C117251300 @default.
- W3025305737 hasConceptScore W3025305737C127413603 @default.
- W3025305737 hasConceptScore W3025305737C13355873 @default.
- W3025305737 hasConceptScore W3025305737C134121241 @default.
- W3025305737 hasConceptScore W3025305737C154945302 @default.
- W3025305737 hasConceptScore W3025305737C159985019 @default.
- W3025305737 hasConceptScore W3025305737C16910744 @default.
- W3025305737 hasConceptScore W3025305737C180016635 @default.
- W3025305737 hasConceptScore W3025305737C192562407 @default.
- W3025305737 hasConceptScore W3025305737C2777551473 @default.
- W3025305737 hasConceptScore W3025305737C2780551164 @default.
- W3025305737 hasConceptScore W3025305737C30407753 @default.
- W3025305737 hasConceptScore W3025305737C33923547 @default.
- W3025305737 hasConceptScore W3025305737C41008148 @default.
- W3025305737 hasConceptScore W3025305737C50644808 @default.
- W3025305737 hasConceptScore W3025305737C66938386 @default.
- W3025305737 hasIssue "3" @default.
- W3025305737 hasLocation W30253057371 @default.
- W3025305737 hasOpenAccess W3025305737 @default.
- W3025305737 hasPrimaryLocation W30253057371 @default.
- W3025305737 hasRelatedWork W2154333687 @default.
- W3025305737 hasRelatedWork W2349530864 @default.
- W3025305737 hasRelatedWork W2391529332 @default.
- W3025305737 hasRelatedWork W2586305530 @default.
- W3025305737 hasRelatedWork W2625355864 @default.
- W3025305737 hasRelatedWork W2734483967 @default.
- W3025305737 hasRelatedWork W2793372004 @default.
- W3025305737 hasRelatedWork W2900003621 @default.
- W3025305737 hasRelatedWork W2900863210 @default.
- W3025305737 hasRelatedWork W2912576013 @default.
- W3025305737 hasRelatedWork W2976800646 @default.
- W3025305737 hasRelatedWork W3033409252 @default.
- W3025305737 hasRelatedWork W3081342661 @default.
- W3025305737 hasRelatedWork W3095733950 @default.
- W3025305737 hasRelatedWork W3182133135 @default.
- W3025305737 hasRelatedWork W3192834734 @default.
- W3025305737 hasRelatedWork W3201751510 @default.
- W3025305737 hasRelatedWork W3209134383 @default.
- W3025305737 hasRelatedWork W3212875559 @default.
- W3025305737 hasRelatedWork W2994111366 @default.
- W3025305737 hasVolume "35" @default.
- W3025305737 isParatext "false" @default.
- W3025305737 isRetracted "false" @default.
- W3025305737 magId "3025305737" @default.
- W3025305737 workType "article" @default.