Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025313276> ?p ?o ?g. }
- W3025313276 abstract "Brain gender differences have been known for a long time and are the possible reason for many psychological, psychiatric and behavioral differences between males and females. Predicting genders from brain functional connectivity (FC) can build the relationship between brain activities and gender, and extracting important gender related FC features from the prediction model offers a way to investigate the brain gender difference. Current predictive models applied to gender prediction demonstrate good accuracies, but usually extract individual functional connections instead of connectivity patterns in the whole connectivity matrix as features. In addition, current models often omit the effect of the input brain FC scale on prediction and cannot give any model uncertainty information. Hence, in this study we propose to predict gender from multiple scales of brain FC with deep learning, which can extract full FC patterns as features. We further develop the understanding of the feature extraction mechanism in deep neural network (DNN) and propose a DNN feature ranking method to extract the highly important features based on their contributions to the prediction. Moreover, we apply Bayesian deep learning to the brain FC gender prediction, which as a probabilistic model can not only make accurate predictions but also generate model uncertainty for each prediction. Experiments were done on the high-quality Human Connectome Project S1200 release dataset comprising the resting state functional MRI data of 1003 healthy adults. First, DNN reaches 83.0%, 87.6%, 92.0%, 93.5% and 94.1% accuracies respectively with the FC input derived from 25, 50, 100, 200, 300 independent component analysis (ICA) components. DNN outperforms the conventional machine learning methods on the 25-ICA-component scale FC, but the linear machine learning method catches up as the number of ICA components increases..." @default.
- W3025313276 created "2020-05-21" @default.
- W3025313276 creator A5012962437 @default.
- W3025313276 creator A5021076382 @default.
- W3025313276 creator A5043743232 @default.
- W3025313276 creator A5050110257 @default.
- W3025313276 creator A5085025467 @default.
- W3025313276 creator A5090108909 @default.
- W3025313276 date "2020-05-18" @default.
- W3025313276 modified "2023-09-26" @default.
- W3025313276 title "Deep Learning and Bayesian Deep Learning Based Gender Prediction in Multi-Scale Brain Functional Connectivity." @default.
- W3025313276 cites W1457602677 @default.
- W3025313276 cites W1983208069 @default.
- W3025313276 cites W1990392898 @default.
- W3025313276 cites W1995450007 @default.
- W3025313276 cites W1997326091 @default.
- W3025313276 cites W2000567681 @default.
- W3025313276 cites W2001789423 @default.
- W3025313276 cites W2008607322 @default.
- W3025313276 cites W2009872283 @default.
- W3025313276 cites W2024729467 @default.
- W3025313276 cites W2035539599 @default.
- W3025313276 cites W2056792865 @default.
- W3025313276 cites W2057536936 @default.
- W3025313276 cites W2060690669 @default.
- W3025313276 cites W2070267783 @default.
- W3025313276 cites W2073588997 @default.
- W3025313276 cites W2076063813 @default.
- W3025313276 cites W2095705004 @default.
- W3025313276 cites W2096672020 @default.
- W3025313276 cites W2096966803 @default.
- W3025313276 cites W2106113519 @default.
- W3025313276 cites W2117102945 @default.
- W3025313276 cites W2117621792 @default.
- W3025313276 cites W2124698428 @default.
- W3025313276 cites W2126370082 @default.
- W3025313276 cites W2130325614 @default.
- W3025313276 cites W2133257461 @default.
- W3025313276 cites W2141224535 @default.
- W3025313276 cites W2149463687 @default.
- W3025313276 cites W2157446241 @default.
- W3025313276 cites W2162390675 @default.
- W3025313276 cites W2163605009 @default.
- W3025313276 cites W2165062525 @default.
- W3025313276 cites W2304458595 @default.
- W3025313276 cites W2488353765 @default.
- W3025313276 cites W2499800833 @default.
- W3025313276 cites W2510306587 @default.
- W3025313276 cites W2567961463 @default.
- W3025313276 cites W2569531558 @default.
- W3025313276 cites W2585560977 @default.
- W3025313276 cites W2617401930 @default.
- W3025313276 cites W2784262759 @default.
- W3025313276 cites W2794613614 @default.
- W3025313276 cites W2919115771 @default.
- W3025313276 cites W2964059111 @default.
- W3025313276 cites W601603264 @default.
- W3025313276 hasPublicationYear "2020" @default.
- W3025313276 type Work @default.
- W3025313276 sameAs 3025313276 @default.
- W3025313276 citedByCount "0" @default.
- W3025313276 crossrefType "posted-content" @default.
- W3025313276 hasAuthorship W3025313276A5012962437 @default.
- W3025313276 hasAuthorship W3025313276A5021076382 @default.
- W3025313276 hasAuthorship W3025313276A5043743232 @default.
- W3025313276 hasAuthorship W3025313276A5050110257 @default.
- W3025313276 hasAuthorship W3025313276A5085025467 @default.
- W3025313276 hasAuthorship W3025313276A5090108909 @default.
- W3025313276 hasConcept C107673813 @default.
- W3025313276 hasConcept C108583219 @default.
- W3025313276 hasConcept C119857082 @default.
- W3025313276 hasConcept C120843803 @default.
- W3025313276 hasConcept C121332964 @default.
- W3025313276 hasConcept C138885662 @default.
- W3025313276 hasConcept C153180895 @default.
- W3025313276 hasConcept C154945302 @default.
- W3025313276 hasConcept C15744967 @default.
- W3025313276 hasConcept C169760540 @default.
- W3025313276 hasConcept C189430467 @default.
- W3025313276 hasConcept C2776401178 @default.
- W3025313276 hasConcept C2778755073 @default.
- W3025313276 hasConcept C3018011982 @default.
- W3025313276 hasConcept C41008148 @default.
- W3025313276 hasConcept C41895202 @default.
- W3025313276 hasConcept C45715564 @default.
- W3025313276 hasConcept C49937458 @default.
- W3025313276 hasConcept C50644808 @default.
- W3025313276 hasConcept C522805319 @default.
- W3025313276 hasConcept C62520636 @default.
- W3025313276 hasConcept C66324658 @default.
- W3025313276 hasConcept C97820695 @default.
- W3025313276 hasConceptScore W3025313276C107673813 @default.
- W3025313276 hasConceptScore W3025313276C108583219 @default.
- W3025313276 hasConceptScore W3025313276C119857082 @default.
- W3025313276 hasConceptScore W3025313276C120843803 @default.
- W3025313276 hasConceptScore W3025313276C121332964 @default.
- W3025313276 hasConceptScore W3025313276C138885662 @default.
- W3025313276 hasConceptScore W3025313276C153180895 @default.
- W3025313276 hasConceptScore W3025313276C154945302 @default.
- W3025313276 hasConceptScore W3025313276C15744967 @default.