Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025352604> ?p ?o ?g. }
- W3025352604 endingPage "100222" @default.
- W3025352604 startingPage "100222" @default.
- W3025352604 abstract "The outbreak of COVID-19 Coronavirus, namely SARS-CoV-2, has created a calamitous situation throughout the world. The cumulative incidence of COVID-19 is rapidly increasing day by day. Machine Learning (ML) and Cloud Computing can be deployed very effectively to track the disease, predict growth of the epidemic and design strategies and policies to manage its spread. This study applies an improved mathematical model to analyse and predict the growth of the epidemic. An ML-based improved model has been applied to predict the potential threat of COVID-19 in countries worldwide. We show that using iterative weighting for fitting Generalized Inverse Weibull distribution, a better fit can be obtained to develop a prediction framework. This has been deployed on a cloud computing platform for more accurate and real-time prediction of the growth behavior of the epidemic. A data driven approach with higher accuracy as here can be very useful for a proactive response from the government and citizens. Finally, we propose a set of research opportunities and setup grounds for further practical applications." @default.
- W3025352604 created "2020-05-21" @default.
- W3025352604 creator A5024179661 @default.
- W3025352604 creator A5071985118 @default.
- W3025352604 creator A5090188734 @default.
- W3025352604 date "2020-09-01" @default.
- W3025352604 modified "2023-10-17" @default.
- W3025352604 title "Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing" @default.
- W3025352604 cites W1505191356 @default.
- W3025352604 cites W1985817742 @default.
- W3025352604 cites W1989802291 @default.
- W3025352604 cites W2117331316 @default.
- W3025352604 cites W2136714512 @default.
- W3025352604 cites W2182471921 @default.
- W3025352604 cites W2418101495 @default.
- W3025352604 cites W2903316082 @default.
- W3025352604 cites W2974110037 @default.
- W3025352604 cites W2985020236 @default.
- W3025352604 cites W2998720941 @default.
- W3025352604 cites W3001118548 @default.
- W3025352604 cites W3001465255 @default.
- W3025352604 cites W3003573988 @default.
- W3025352604 cites W3004397688 @default.
- W3025352604 cites W3004894342 @default.
- W3025352604 cites W3006189429 @default.
- W3025352604 cites W3006914768 @default.
- W3025352604 cites W3008696669 @default.
- W3025352604 cites W3008840293 @default.
- W3025352604 cites W3010020071 @default.
- W3025352604 cites W3012651898 @default.
- W3025352604 cites W3012809581 @default.
- W3025352604 cites W3014538749 @default.
- W3025352604 cites W3085954833 @default.
- W3025352604 doi "https://doi.org/10.1016/j.iot.2020.100222" @default.
- W3025352604 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7215145" @default.
- W3025352604 hasPublicationYear "2020" @default.
- W3025352604 type Work @default.
- W3025352604 sameAs 3025352604 @default.
- W3025352604 citedByCount "285" @default.
- W3025352604 countsByYear W30253526042012 @default.
- W3025352604 countsByYear W30253526042020 @default.
- W3025352604 countsByYear W30253526042021 @default.
- W3025352604 countsByYear W30253526042022 @default.
- W3025352604 countsByYear W30253526042023 @default.
- W3025352604 crossrefType "journal-article" @default.
- W3025352604 hasAuthorship W3025352604A5024179661 @default.
- W3025352604 hasAuthorship W3025352604A5071985118 @default.
- W3025352604 hasAuthorship W3025352604A5090188734 @default.
- W3025352604 hasBestOaLocation W30253526041 @default.
- W3025352604 hasConcept C105795698 @default.
- W3025352604 hasConcept C111919701 @default.
- W3025352604 hasConcept C119857082 @default.
- W3025352604 hasConcept C126838900 @default.
- W3025352604 hasConcept C142724271 @default.
- W3025352604 hasConcept C154945302 @default.
- W3025352604 hasConcept C173291955 @default.
- W3025352604 hasConcept C180802074 @default.
- W3025352604 hasConcept C183115368 @default.
- W3025352604 hasConcept C2779134260 @default.
- W3025352604 hasConcept C3008058167 @default.
- W3025352604 hasConcept C33923547 @default.
- W3025352604 hasConcept C41008148 @default.
- W3025352604 hasConcept C524204448 @default.
- W3025352604 hasConcept C71924100 @default.
- W3025352604 hasConcept C79974875 @default.
- W3025352604 hasConcept C89623803 @default.
- W3025352604 hasConceptScore W3025352604C105795698 @default.
- W3025352604 hasConceptScore W3025352604C111919701 @default.
- W3025352604 hasConceptScore W3025352604C119857082 @default.
- W3025352604 hasConceptScore W3025352604C126838900 @default.
- W3025352604 hasConceptScore W3025352604C142724271 @default.
- W3025352604 hasConceptScore W3025352604C154945302 @default.
- W3025352604 hasConceptScore W3025352604C173291955 @default.
- W3025352604 hasConceptScore W3025352604C180802074 @default.
- W3025352604 hasConceptScore W3025352604C183115368 @default.
- W3025352604 hasConceptScore W3025352604C2779134260 @default.
- W3025352604 hasConceptScore W3025352604C3008058167 @default.
- W3025352604 hasConceptScore W3025352604C33923547 @default.
- W3025352604 hasConceptScore W3025352604C41008148 @default.
- W3025352604 hasConceptScore W3025352604C524204448 @default.
- W3025352604 hasConceptScore W3025352604C71924100 @default.
- W3025352604 hasConceptScore W3025352604C79974875 @default.
- W3025352604 hasConceptScore W3025352604C89623803 @default.
- W3025352604 hasLocation W30253526041 @default.
- W3025352604 hasLocation W30253526042 @default.
- W3025352604 hasLocation W30253526043 @default.
- W3025352604 hasLocation W30253526044 @default.
- W3025352604 hasOpenAccess W3025352604 @default.
- W3025352604 hasPrimaryLocation W30253526041 @default.
- W3025352604 hasRelatedWork W2383532021 @default.
- W3025352604 hasRelatedWork W3103289217 @default.
- W3025352604 hasRelatedWork W3106370311 @default.
- W3025352604 hasRelatedWork W3119540162 @default.
- W3025352604 hasRelatedWork W3152606407 @default.
- W3025352604 hasRelatedWork W3152916563 @default.
- W3025352604 hasRelatedWork W4313474620 @default.
- W3025352604 hasRelatedWork W4327956415 @default.
- W3025352604 hasRelatedWork W4381432928 @default.