Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025357406> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3025357406 abstract "Music lyrics can convey a great part of the meaning in popular songs. Such meaning is important for humans to understand songs as related to typical narratives, such as romantic interests or life stories. This understanding is part of affective aspects that can be used to choose songs to play in particular situations. This paper analyzes the effectiveness of using text mining tools to classify lyrics according to their narrative contexts. For such, we used a vote-based dataset and several machine learning algorithms. Also, we compared the classification results to that of a typical human. Last, we compare the problems of identifying narrative contexts and of identifying lyric valence. Our results indicate that narrative contexts can be identified more consistently than valence. Also, we show that human-based classification typically do not reach a high accuracy, which suggests an upper bound for automatic classification. narrative contexts. For such, we built a dataset containing Brazilian popular music lyrics which were raters voted online according to its context and valence. We approached the problem using a machine learning pipeline in which lyrics are projected into a vector space and then classified using general-purpose algorithms. We experimented with document representations based on sparse topic models [11, 12, 13, 14], which aims to find groups of words that typically appear together in the dataset. Also, we extracted part-of-speech tags for each lyric and used their histogram as features in the classification process." @default.
- W3025357406 created "2020-05-21" @default.
- W3025357406 creator A5038983104 @default.
- W3025357406 creator A5057729011 @default.
- W3025357406 date "2019-09-25" @default.
- W3025357406 modified "2023-10-01" @default.
- W3025357406 title "Identifying Narrative Contexts in Brazilian Popular Music Lyrics Using Sparse Topic Models: A Comparison Between Human-Based and Machine-Based Classification" @default.
- W3025357406 doi "https://doi.org/10.5753/sbcm.2019.10417" @default.
- W3025357406 hasPublicationYear "2019" @default.
- W3025357406 type Work @default.
- W3025357406 sameAs 3025357406 @default.
- W3025357406 citedByCount "0" @default.
- W3025357406 crossrefType "proceedings-article" @default.
- W3025357406 hasAuthorship W3025357406A5038983104 @default.
- W3025357406 hasAuthorship W3025357406A5057729011 @default.
- W3025357406 hasBestOaLocation W30253574061 @default.
- W3025357406 hasConcept C119857082 @default.
- W3025357406 hasConcept C12267149 @default.
- W3025357406 hasConcept C124952713 @default.
- W3025357406 hasConcept C138885662 @default.
- W3025357406 hasConcept C142362112 @default.
- W3025357406 hasConcept C154945302 @default.
- W3025357406 hasConcept C15744967 @default.
- W3025357406 hasConcept C166957645 @default.
- W3025357406 hasConcept C199033989 @default.
- W3025357406 hasConcept C204321447 @default.
- W3025357406 hasConcept C2776436406 @default.
- W3025357406 hasConcept C2777946086 @default.
- W3025357406 hasConcept C2779343474 @default.
- W3025357406 hasConcept C2780876879 @default.
- W3025357406 hasConcept C41008148 @default.
- W3025357406 hasConcept C41895202 @default.
- W3025357406 hasConcept C542102704 @default.
- W3025357406 hasConcept C558565934 @default.
- W3025357406 hasConcept C95457728 @default.
- W3025357406 hasConceptScore W3025357406C119857082 @default.
- W3025357406 hasConceptScore W3025357406C12267149 @default.
- W3025357406 hasConceptScore W3025357406C124952713 @default.
- W3025357406 hasConceptScore W3025357406C138885662 @default.
- W3025357406 hasConceptScore W3025357406C142362112 @default.
- W3025357406 hasConceptScore W3025357406C154945302 @default.
- W3025357406 hasConceptScore W3025357406C15744967 @default.
- W3025357406 hasConceptScore W3025357406C166957645 @default.
- W3025357406 hasConceptScore W3025357406C199033989 @default.
- W3025357406 hasConceptScore W3025357406C204321447 @default.
- W3025357406 hasConceptScore W3025357406C2776436406 @default.
- W3025357406 hasConceptScore W3025357406C2777946086 @default.
- W3025357406 hasConceptScore W3025357406C2779343474 @default.
- W3025357406 hasConceptScore W3025357406C2780876879 @default.
- W3025357406 hasConceptScore W3025357406C41008148 @default.
- W3025357406 hasConceptScore W3025357406C41895202 @default.
- W3025357406 hasConceptScore W3025357406C542102704 @default.
- W3025357406 hasConceptScore W3025357406C558565934 @default.
- W3025357406 hasConceptScore W3025357406C95457728 @default.
- W3025357406 hasLocation W30253574061 @default.
- W3025357406 hasOpenAccess W3025357406 @default.
- W3025357406 hasPrimaryLocation W30253574061 @default.
- W3025357406 hasRelatedWork W11880859 @default.
- W3025357406 hasRelatedWork W12168553 @default.
- W3025357406 hasRelatedWork W13759301 @default.
- W3025357406 hasRelatedWork W14230040 @default.
- W3025357406 hasRelatedWork W2308727 @default.
- W3025357406 hasRelatedWork W362434 @default.
- W3025357406 hasRelatedWork W3887983 @default.
- W3025357406 hasRelatedWork W6211322 @default.
- W3025357406 hasRelatedWork W8738421 @default.
- W3025357406 hasRelatedWork W2337729 @default.
- W3025357406 isParatext "false" @default.
- W3025357406 isRetracted "false" @default.
- W3025357406 magId "3025357406" @default.
- W3025357406 workType "article" @default.