Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025364257> ?p ?o ?g. }
- W3025364257 endingPage "823" @default.
- W3025364257 startingPage "823" @default.
- W3025364257 abstract "In this study, a new idea is proposed to analyze the financial market and detect price fluctuations, by integrating the technology of PSR (phase space reconstruction) and SOM (self organizing maps) neural network algorithms. The prediction of price and index in the financial market has always been a challenging and significant subject in time-series studies, and the prediction accuracy or the sensitivity of timely warning price fluctuations plays an important role in improving returns and avoiding risks for investors. However, it is the high volatility and chaotic dynamics of financial time series that constitute the most significantly influential factors affecting the prediction effect. As a solution, the time series is first projected into a phase space by PSR, and the phase tracks are then sliced into several parts. SOM neural network is used to cluster the phase track parts and extract the linear components in each embedded dimension. After that, LSTM (long short-term memory) is used to test the results of clustering. When there are multiple linear components in the m-dimension phase point, the superposition of these linear components still remains the linear property, and they exhibit order and periodicity in phase space, thereby providing a possibility for time series prediction. In this study, the Dow Jones index, Nikkei index, China growth enterprise market index and Chinese gold price are tested to determine the validity of the model. To summarize, the model has proven itself able to mark the unpredictable time series area and evaluate the unpredictable risk by using 1-dimension time series data." @default.
- W3025364257 created "2020-05-21" @default.
- W3025364257 creator A5018344324 @default.
- W3025364257 creator A5022524695 @default.
- W3025364257 creator A5034853402 @default.
- W3025364257 creator A5073120167 @default.
- W3025364257 creator A5090668333 @default.
- W3025364257 date "2020-05-16" @default.
- W3025364257 modified "2023-09-24" @default.
- W3025364257 title "Detecting Predictable Segments of Chaotic Financial Time Series via Neural Network" @default.
- W3025364257 cites W1965767194 @default.
- W3025364257 cites W1978637569 @default.
- W3025364257 cites W1978775764 @default.
- W3025364257 cites W1979406253 @default.
- W3025364257 cites W1990517717 @default.
- W3025364257 cites W2040704490 @default.
- W3025364257 cites W2051448560 @default.
- W3025364257 cites W2064675550 @default.
- W3025364257 cites W2069308542 @default.
- W3025364257 cites W2073630396 @default.
- W3025364257 cites W2091391445 @default.
- W3025364257 cites W2100024921 @default.
- W3025364257 cites W2107878631 @default.
- W3025364257 cites W2117821674 @default.
- W3025364257 cites W2152254020 @default.
- W3025364257 cites W2402395425 @default.
- W3025364257 cites W2621294541 @default.
- W3025364257 cites W2769091037 @default.
- W3025364257 cites W2905238323 @default.
- W3025364257 cites W2910942486 @default.
- W3025364257 cites W2911773667 @default.
- W3025364257 cites W2912829604 @default.
- W3025364257 cites W2936565617 @default.
- W3025364257 cites W2940914091 @default.
- W3025364257 cites W2967982296 @default.
- W3025364257 cites W2997394590 @default.
- W3025364257 cites W3008235510 @default.
- W3025364257 doi "https://doi.org/10.3390/electronics9050823" @default.
- W3025364257 hasPublicationYear "2020" @default.
- W3025364257 type Work @default.
- W3025364257 sameAs 3025364257 @default.
- W3025364257 citedByCount "4" @default.
- W3025364257 countsByYear W30253642572020 @default.
- W3025364257 countsByYear W30253642572021 @default.
- W3025364257 countsByYear W30253642572023 @default.
- W3025364257 crossrefType "journal-article" @default.
- W3025364257 hasAuthorship W3025364257A5018344324 @default.
- W3025364257 hasAuthorship W3025364257A5022524695 @default.
- W3025364257 hasAuthorship W3025364257A5034853402 @default.
- W3025364257 hasAuthorship W3025364257A5073120167 @default.
- W3025364257 hasAuthorship W3025364257A5090668333 @default.
- W3025364257 hasBestOaLocation W30253642571 @default.
- W3025364257 hasConcept C105795698 @default.
- W3025364257 hasConcept C110601934 @default.
- W3025364257 hasConcept C119857082 @default.
- W3025364257 hasConcept C121332964 @default.
- W3025364257 hasConcept C134306372 @default.
- W3025364257 hasConcept C136764020 @default.
- W3025364257 hasConcept C143724316 @default.
- W3025364257 hasConcept C149782125 @default.
- W3025364257 hasConcept C151342819 @default.
- W3025364257 hasConcept C151406439 @default.
- W3025364257 hasConcept C151730666 @default.
- W3025364257 hasConcept C154945302 @default.
- W3025364257 hasConcept C197640229 @default.
- W3025364257 hasConcept C202444582 @default.
- W3025364257 hasConcept C23922673 @default.
- W3025364257 hasConcept C26546657 @default.
- W3025364257 hasConcept C27753989 @default.
- W3025364257 hasConcept C2776142675 @default.
- W3025364257 hasConcept C2777052490 @default.
- W3025364257 hasConcept C2777382242 @default.
- W3025364257 hasConcept C33676613 @default.
- W3025364257 hasConcept C33923547 @default.
- W3025364257 hasConcept C40636538 @default.
- W3025364257 hasConcept C41008148 @default.
- W3025364257 hasConcept C50644808 @default.
- W3025364257 hasConcept C73555534 @default.
- W3025364257 hasConcept C86803240 @default.
- W3025364257 hasConcept C91602232 @default.
- W3025364257 hasConcept C97355855 @default.
- W3025364257 hasConceptScore W3025364257C105795698 @default.
- W3025364257 hasConceptScore W3025364257C110601934 @default.
- W3025364257 hasConceptScore W3025364257C119857082 @default.
- W3025364257 hasConceptScore W3025364257C121332964 @default.
- W3025364257 hasConceptScore W3025364257C134306372 @default.
- W3025364257 hasConceptScore W3025364257C136764020 @default.
- W3025364257 hasConceptScore W3025364257C143724316 @default.
- W3025364257 hasConceptScore W3025364257C149782125 @default.
- W3025364257 hasConceptScore W3025364257C151342819 @default.
- W3025364257 hasConceptScore W3025364257C151406439 @default.
- W3025364257 hasConceptScore W3025364257C151730666 @default.
- W3025364257 hasConceptScore W3025364257C154945302 @default.
- W3025364257 hasConceptScore W3025364257C197640229 @default.
- W3025364257 hasConceptScore W3025364257C202444582 @default.
- W3025364257 hasConceptScore W3025364257C23922673 @default.
- W3025364257 hasConceptScore W3025364257C26546657 @default.
- W3025364257 hasConceptScore W3025364257C27753989 @default.