Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025430147> ?p ?o ?g. }
- W3025430147 endingPage "109959" @default.
- W3025430147 startingPage "109959" @default.
- W3025430147 abstract "Failure in brittle materials under dynamic loading conditions is a result of the propagation and coalescence of microcracks. Simulating this mechanism at the continuum level is computationally expensive or, in some cases, intractable. The computational cost is due to the need for highly resolved computational meshes required to capture complex crack growth behavior, such as branching, turning, etc. Typically, continuum-scale models that account for brittle damage evolution homogenize the crack network in some way, which reduces the overall computational cost, but can also neglect key physics of the subgrid crack growth behavior, sacrificing accuracy for efficiency. We have developed an approach using machine learning that overcomes the current inability to represent micro-scale physics at the macro-scale. Our approach leverages damage and stress data from a high-fidelity model that explicitly resolves microcrack behavior to build an inexpensive machine learning emulator, which runs in seconds as opposed to the high-fidelity model, which takes hours. Once trained, the machine learning emulator is used to predict the evolution of crack length statistics. A continuum-scale constitutive model is then informed with these crack statistics, speeding up the workflow by four orders of magnitude. Both the machine learning model and the continuum-scale model are validated against a high-fidelity model and experimental data, respectively, showing excellent agreement. There are two key findings. The first is that we can reduce the dimensionality of the problem, establishing that the machine learning emulator only needs the length of the longest crack and one of the maximum stress components to capture the necessary physics. Another compelling finding is that the emulator can be trained in one experimental setting and transferred successfully to predict behavior in a different setting." @default.
- W3025430147 created "2020-05-21" @default.
- W3025430147 creator A5008399842 @default.
- W3025430147 creator A5013992441 @default.
- W3025430147 creator A5026086631 @default.
- W3025430147 creator A5034755532 @default.
- W3025430147 creator A5039283075 @default.
- W3025430147 creator A5041289923 @default.
- W3025430147 creator A5072498681 @default.
- W3025430147 date "2021-01-01" @default.
- W3025430147 modified "2023-09-25" @default.
- W3025430147 title "Accelerating high-strain continuum-scale brittle fracture simulations with machine learning" @default.
- W3025430147 cites W1572063013 @default.
- W3025430147 cites W1964948845 @default.
- W3025430147 cites W1976420562 @default.
- W3025430147 cites W1983523068 @default.
- W3025430147 cites W1984753492 @default.
- W3025430147 cites W2003174275 @default.
- W3025430147 cites W2017852119 @default.
- W3025430147 cites W2025001960 @default.
- W3025430147 cites W2051875053 @default.
- W3025430147 cites W2056211279 @default.
- W3025430147 cites W2066016892 @default.
- W3025430147 cites W2090066687 @default.
- W3025430147 cites W2105482548 @default.
- W3025430147 cites W2125049970 @default.
- W3025430147 cites W2297136472 @default.
- W3025430147 cites W2472587927 @default.
- W3025430147 cites W2512040408 @default.
- W3025430147 cites W2594055721 @default.
- W3025430147 cites W2793169732 @default.
- W3025430147 cites W2887006546 @default.
- W3025430147 cites W2898069542 @default.
- W3025430147 cites W2899683969 @default.
- W3025430147 cites W2903475457 @default.
- W3025430147 cites W2943556339 @default.
- W3025430147 cites W2951569694 @default.
- W3025430147 cites W2953842065 @default.
- W3025430147 cites W2954432986 @default.
- W3025430147 cites W2968923792 @default.
- W3025430147 cites W2982013996 @default.
- W3025430147 cites W2989765054 @default.
- W3025430147 cites W2993477888 @default.
- W3025430147 cites W3043686891 @default.
- W3025430147 cites W3099132192 @default.
- W3025430147 cites W3104614413 @default.
- W3025430147 cites W339826555 @default.
- W3025430147 doi "https://doi.org/10.1016/j.commatsci.2020.109959" @default.
- W3025430147 hasPublicationYear "2021" @default.
- W3025430147 type Work @default.
- W3025430147 sameAs 3025430147 @default.
- W3025430147 citedByCount "10" @default.
- W3025430147 countsByYear W30254301472020 @default.
- W3025430147 countsByYear W30254301472021 @default.
- W3025430147 countsByYear W30254301472022 @default.
- W3025430147 countsByYear W30254301472023 @default.
- W3025430147 crossrefType "journal-article" @default.
- W3025430147 hasAuthorship W3025430147A5008399842 @default.
- W3025430147 hasAuthorship W3025430147A5013992441 @default.
- W3025430147 hasAuthorship W3025430147A5026086631 @default.
- W3025430147 hasAuthorship W3025430147A5034755532 @default.
- W3025430147 hasAuthorship W3025430147A5039283075 @default.
- W3025430147 hasAuthorship W3025430147A5041289923 @default.
- W3025430147 hasAuthorship W3025430147A5072498681 @default.
- W3025430147 hasBestOaLocation W30254301471 @default.
- W3025430147 hasConcept C11413529 @default.
- W3025430147 hasConcept C119857082 @default.
- W3025430147 hasConcept C121332964 @default.
- W3025430147 hasConcept C121684516 @default.
- W3025430147 hasConcept C127413603 @default.
- W3025430147 hasConcept C136478896 @default.
- W3025430147 hasConcept C149792144 @default.
- W3025430147 hasConcept C154945302 @default.
- W3025430147 hasConcept C159985019 @default.
- W3025430147 hasConcept C192562407 @default.
- W3025430147 hasConcept C31487907 @default.
- W3025430147 hasConcept C41008148 @default.
- W3025430147 hasConcept C59085676 @default.
- W3025430147 hasConcept C66938386 @default.
- W3025430147 hasConcept C87355193 @default.
- W3025430147 hasConceptScore W3025430147C11413529 @default.
- W3025430147 hasConceptScore W3025430147C119857082 @default.
- W3025430147 hasConceptScore W3025430147C121332964 @default.
- W3025430147 hasConceptScore W3025430147C121684516 @default.
- W3025430147 hasConceptScore W3025430147C127413603 @default.
- W3025430147 hasConceptScore W3025430147C136478896 @default.
- W3025430147 hasConceptScore W3025430147C149792144 @default.
- W3025430147 hasConceptScore W3025430147C154945302 @default.
- W3025430147 hasConceptScore W3025430147C159985019 @default.
- W3025430147 hasConceptScore W3025430147C192562407 @default.
- W3025430147 hasConceptScore W3025430147C31487907 @default.
- W3025430147 hasConceptScore W3025430147C41008148 @default.
- W3025430147 hasConceptScore W3025430147C59085676 @default.
- W3025430147 hasConceptScore W3025430147C66938386 @default.
- W3025430147 hasConceptScore W3025430147C87355193 @default.
- W3025430147 hasFunder F4320332369 @default.
- W3025430147 hasLocation W30254301471 @default.
- W3025430147 hasLocation W30254301472 @default.