Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025432950> ?p ?o ?g. }
- W3025432950 endingPage "1523" @default.
- W3025432950 startingPage "1523" @default.
- W3025432950 abstract "Recognition of the spatial variation in tree species composition is a necessary precondition for wise management and conservation of forests. In the Peruvian Amazonia, this goal is not yet achieved mostly because adequate species inventory data has been lacking. The recently started Peruvian national forest inventory (INFFS) is expected to change the situation. Here, we analyzed genus-level variation, summarized through non-metric multidimensional scaling (NMDS), in a set of 157 INFFS inventory plots in lowland to low mountain rain forests (<2000 m above sea level) using Landsat satellite imagery and climatic, edaphic, and elevation data as predictor variables. Genus-level floristic patterns have earlier been found to be indicative of species-level patterns. In correlation tests, the floristic variation of tree genera was most strongly related to Landsat variables and secondly to climatic variables. We used random forest regression, under varying criteria of feature selection and cross-validation, to predict the floristic composition on the basis of Landsat and environmental data. The best model explained >60% of the variation along NMDS axes 1 and 2 and 40% of the variation along NMDS axis 3. We used this model to predict the three NMDS dimensions at a 450-m resolution over all of the Peruvian Amazonia and classified the pixels into 10 floristic classes using k-means classification. An indicator analysis identified statistically significant indicator genera for 8 out of the 10 classes. The results are congruent with earlier studies, suggesting that the approach is robust and can be applied to other tropical regions, which is useful for reducing research gaps and for identifying suitable areas for conservation." @default.
- W3025432950 created "2020-05-21" @default.
- W3025432950 creator A5047523221 @default.
- W3025432950 creator A5052652930 @default.
- W3025432950 creator A5071493827 @default.
- W3025432950 creator A5078667359 @default.
- W3025432950 creator A5080081811 @default.
- W3025432950 creator A5084432716 @default.
- W3025432950 creator A5090062829 @default.
- W3025432950 date "2020-05-10" @default.
- W3025432950 modified "2023-09-23" @default.
- W3025432950 title "Mapping Floristic Patterns of Trees in Peruvian Amazonia Using Remote Sensing and Machine Learning" @default.
- W3025432950 cites W102821606 @default.
- W3025432950 cites W1552304245 @default.
- W3025432950 cites W1575332305 @default.
- W3025432950 cites W1575419765 @default.
- W3025432950 cites W1602029612 @default.
- W3025432950 cites W1650917424 @default.
- W3025432950 cites W1966579847 @default.
- W3025432950 cites W1975124824 @default.
- W3025432950 cites W1990421832 @default.
- W3025432950 cites W1998498889 @default.
- W3025432950 cites W2007266251 @default.
- W3025432950 cites W2008397332 @default.
- W3025432950 cites W2011702848 @default.
- W3025432950 cites W2013968785 @default.
- W3025432950 cites W2020145484 @default.
- W3025432950 cites W2022166809 @default.
- W3025432950 cites W2022988189 @default.
- W3025432950 cites W2027883628 @default.
- W3025432950 cites W2040792004 @default.
- W3025432950 cites W2042845702 @default.
- W3025432950 cites W2053740214 @default.
- W3025432950 cites W2055602174 @default.
- W3025432950 cites W2057820360 @default.
- W3025432950 cites W2059216137 @default.
- W3025432950 cites W2059491166 @default.
- W3025432950 cites W2060392059 @default.
- W3025432950 cites W2065359252 @default.
- W3025432950 cites W2066717607 @default.
- W3025432950 cites W2072100884 @default.
- W3025432950 cites W2074075865 @default.
- W3025432950 cites W2075912726 @default.
- W3025432950 cites W2078147935 @default.
- W3025432950 cites W2085958776 @default.
- W3025432950 cites W2086603855 @default.
- W3025432950 cites W2091577257 @default.
- W3025432950 cites W2093740382 @default.
- W3025432950 cites W2102858277 @default.
- W3025432950 cites W2104676388 @default.
- W3025432950 cites W2119199370 @default.
- W3025432950 cites W2121925016 @default.
- W3025432950 cites W2125036344 @default.
- W3025432950 cites W2126523151 @default.
- W3025432950 cites W2127294002 @default.
- W3025432950 cites W2134105845 @default.
- W3025432950 cites W2139560201 @default.
- W3025432950 cites W2139961611 @default.
- W3025432950 cites W2146172238 @default.
- W3025432950 cites W2147693728 @default.
- W3025432950 cites W2152140828 @default.
- W3025432950 cites W2156691552 @default.
- W3025432950 cites W2157285261 @default.
- W3025432950 cites W2163457179 @default.
- W3025432950 cites W2173781250 @default.
- W3025432950 cites W2194958479 @default.
- W3025432950 cites W2209411655 @default.
- W3025432950 cites W2427688769 @default.
- W3025432950 cites W2502783411 @default.
- W3025432950 cites W2525243036 @default.
- W3025432950 cites W2552919306 @default.
- W3025432950 cites W2556582954 @default.
- W3025432950 cites W2560136348 @default.
- W3025432950 cites W2582323655 @default.
- W3025432950 cites W2588003345 @default.
- W3025432950 cites W2594233224 @default.
- W3025432950 cites W2610031555 @default.
- W3025432950 cites W2755672132 @default.
- W3025432950 cites W2768025983 @default.
- W3025432950 cites W2773188111 @default.
- W3025432950 cites W2783397339 @default.
- W3025432950 cites W2794916302 @default.
- W3025432950 cites W2795228472 @default.
- W3025432950 cites W2888452975 @default.
- W3025432950 cites W2949805636 @default.
- W3025432950 cites W2972629016 @default.
- W3025432950 cites W2979065907 @default.
- W3025432950 cites W2981992143 @default.
- W3025432950 cites W2984835294 @default.
- W3025432950 cites W3104895181 @default.
- W3025432950 cites W3134898604 @default.
- W3025432950 cites W4232225751 @default.
- W3025432950 cites W2590369514 @default.
- W3025432950 doi "https://doi.org/10.3390/rs12091523" @default.
- W3025432950 hasPublicationYear "2020" @default.
- W3025432950 type Work @default.
- W3025432950 sameAs 3025432950 @default.
- W3025432950 citedByCount "6" @default.