Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025432989> ?p ?o ?g. }
- W3025432989 endingPage "104043" @default.
- W3025432989 startingPage "104043" @default.
- W3025432989 abstract "Just-in-Time-Learning (JITL) is one of the most frequently used adaptive methods in data-based soft sensor design for chemical processes. While JITL is an effective method to combat concept drifts, samples selected via similarity metric in a Euclidean space consisting of a large number of equally-weighted predictors may diminish the performance of the JITL, due to curse of dimensionality and the varying degrees of nonlinearity between the predictor and response variables. Algorithms involving offline tuning of predictor weights were developed to tackle this issue, but changes in process conditions may depreciate a currently used set of weights for measuring similarity. In the current study, an adaptive method is developed for adjusting predictor weights in the Euclidean space used in measuring similarity between samples, named JITL via Online Weighted Euclidean Distance (JITL-OWED). JITL-OWED mainly consists of four steps: i) Relevant data is selected from an online weighted Euclidean space, and multiple models using different weights in their similarity measures are simultaneously constructed. ii) Control charts are used to detect changes in the prediction accuracy of the multiple models constructed online, hence triggering new subset searches. iii) A small number of search steps is used in subset selection, akin to early stopping in gradient search, with the “modest” aim of moving towards a local minimum for feasible online implementation. Exponentially Weighted Moving Average (EWMA) filtering is employed to stabilize the results from feature searches. iv) Final predictions are obtained via stacking multiple models. Employing JITL-OWED on one synthetic and four publicly available real datasets shows that online predictor weighting may indeed improve the prediction accuracy of the traditional JITL up to 80%, and JITL-OWED is both easy to implement and tune." @default.
- W3025432989 created "2020-05-21" @default.
- W3025432989 creator A5063200306 @default.
- W3025432989 date "2020-08-01" @default.
- W3025432989 modified "2023-10-07" @default.
- W3025432989 title "Online tuning of predictor weights for relevant data selection in just-in-time-learning" @default.
- W3025432989 cites W1566641586 @default.
- W3025432989 cites W1868985710 @default.
- W3025432989 cites W1870365817 @default.
- W3025432989 cites W1964940105 @default.
- W3025432989 cites W1967511636 @default.
- W3025432989 cites W1983597155 @default.
- W3025432989 cites W1996139334 @default.
- W3025432989 cites W2000651380 @default.
- W3025432989 cites W2012301399 @default.
- W3025432989 cites W2015260783 @default.
- W3025432989 cites W2016794826 @default.
- W3025432989 cites W2017337590 @default.
- W3025432989 cites W2024081693 @default.
- W3025432989 cites W2030964520 @default.
- W3025432989 cites W2032058792 @default.
- W3025432989 cites W2034485410 @default.
- W3025432989 cites W2034978228 @default.
- W3025432989 cites W2037842625 @default.
- W3025432989 cites W2040731319 @default.
- W3025432989 cites W2058128874 @default.
- W3025432989 cites W2072266825 @default.
- W3025432989 cites W2073447193 @default.
- W3025432989 cites W2077496324 @default.
- W3025432989 cites W2081323274 @default.
- W3025432989 cites W2097982640 @default.
- W3025432989 cites W2114316570 @default.
- W3025432989 cites W2121854064 @default.
- W3025432989 cites W2125419932 @default.
- W3025432989 cites W2138728394 @default.
- W3025432989 cites W2147062914 @default.
- W3025432989 cites W2154290668 @default.
- W3025432989 cites W2158346245 @default.
- W3025432989 cites W2260669358 @default.
- W3025432989 cites W2261061938 @default.
- W3025432989 cites W2316323201 @default.
- W3025432989 cites W2526447135 @default.
- W3025432989 cites W2571007800 @default.
- W3025432989 cites W2585528949 @default.
- W3025432989 cites W2618628035 @default.
- W3025432989 cites W2791651004 @default.
- W3025432989 cites W2795998604 @default.
- W3025432989 cites W2804079976 @default.
- W3025432989 cites W2810016643 @default.
- W3025432989 cites W2903557943 @default.
- W3025432989 cites W2904146505 @default.
- W3025432989 cites W2914185918 @default.
- W3025432989 cites W2974374461 @default.
- W3025432989 cites W3004005358 @default.
- W3025432989 cites W4229530126 @default.
- W3025432989 cites W4255466416 @default.
- W3025432989 cites W4362131110 @default.
- W3025432989 cites W976938947 @default.
- W3025432989 cites W988335224 @default.
- W3025432989 doi "https://doi.org/10.1016/j.chemolab.2020.104043" @default.
- W3025432989 hasPublicationYear "2020" @default.
- W3025432989 type Work @default.
- W3025432989 sameAs 3025432989 @default.
- W3025432989 citedByCount "10" @default.
- W3025432989 countsByYear W30254329892021 @default.
- W3025432989 countsByYear W30254329892022 @default.
- W3025432989 countsByYear W30254329892023 @default.
- W3025432989 crossrefType "journal-article" @default.
- W3025432989 hasAuthorship W3025432989A5063200306 @default.
- W3025432989 hasConcept C103278499 @default.
- W3025432989 hasConcept C111030470 @default.
- W3025432989 hasConcept C115961682 @default.
- W3025432989 hasConcept C120174047 @default.
- W3025432989 hasConcept C124101348 @default.
- W3025432989 hasConcept C153180895 @default.
- W3025432989 hasConcept C154945302 @default.
- W3025432989 hasConcept C162324750 @default.
- W3025432989 hasConcept C176217482 @default.
- W3025432989 hasConcept C21547014 @default.
- W3025432989 hasConcept C41008148 @default.
- W3025432989 hasConceptScore W3025432989C103278499 @default.
- W3025432989 hasConceptScore W3025432989C111030470 @default.
- W3025432989 hasConceptScore W3025432989C115961682 @default.
- W3025432989 hasConceptScore W3025432989C120174047 @default.
- W3025432989 hasConceptScore W3025432989C124101348 @default.
- W3025432989 hasConceptScore W3025432989C153180895 @default.
- W3025432989 hasConceptScore W3025432989C154945302 @default.
- W3025432989 hasConceptScore W3025432989C162324750 @default.
- W3025432989 hasConceptScore W3025432989C176217482 @default.
- W3025432989 hasConceptScore W3025432989C21547014 @default.
- W3025432989 hasConceptScore W3025432989C41008148 @default.
- W3025432989 hasLocation W30254329891 @default.
- W3025432989 hasOpenAccess W3025432989 @default.
- W3025432989 hasPrimaryLocation W30254329891 @default.
- W3025432989 hasRelatedWork W1996805379 @default.
- W3025432989 hasRelatedWork W2019538911 @default.
- W3025432989 hasRelatedWork W2353241519 @default.
- W3025432989 hasRelatedWork W2355801475 @default.