Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025458843> ?p ?o ?g. }
- W3025458843 abstract "Legislation can be viewed as a body of prescriptive rules expressed in natural language. The application of legislation to facts of a case we refer to as statutory reasoning, where those facts are also expressed in natural language. Computational statutory reasoning is distinct from most existing work in machine reading, in that much of the information needed for deciding a case is declared exactly once (a law), while the information needed in much of machine reading tends to be learned through distributional language statistics. To investigate the performance of natural language understanding approaches on statutory reasoning, we introduce a dataset, together with a legal-domain text corpus. Straightforward application of machine reading models exhibits low out-of-the-box performance on our questions, whether or not they have been fine-tuned to the legal domain. We contrast this with a hand-constructed Prolog-based system, designed to fully solve the task. These experiments support a discussion of the challenges facing statutory reasoning moving forward, which we argue is an interesting real-world task that can motivate the development of models able to utilize prescriptive rules specified in natural language." @default.
- W3025458843 created "2020-05-21" @default.
- W3025458843 creator A5017498603 @default.
- W3025458843 creator A5075825791 @default.
- W3025458843 creator A5077212858 @default.
- W3025458843 date "2020-05-11" @default.
- W3025458843 modified "2023-09-28" @default.
- W3025458843 title "A Dataset for Statutory Reasoning in Tax Law Entailment and Question Answering" @default.
- W3025458843 cites W1522301498 @default.
- W3025458843 cites W1525961042 @default.
- W3025458843 cites W188378287 @default.
- W3025458843 cites W189928767 @default.
- W3025458843 cites W195360844 @default.
- W3025458843 cites W1965774555 @default.
- W3025458843 cites W1968181674 @default.
- W3025458843 cites W1984954092 @default.
- W3025458843 cites W1995770214 @default.
- W3025458843 cites W2035902442 @default.
- W3025458843 cites W2044620560 @default.
- W3025458843 cites W2048600620 @default.
- W3025458843 cites W2050223480 @default.
- W3025458843 cites W2063112000 @default.
- W3025458843 cites W2074706689 @default.
- W3025458843 cites W2127531772 @default.
- W3025458843 cites W2127978399 @default.
- W3025458843 cites W2130158090 @default.
- W3025458843 cites W2145755360 @default.
- W3025458843 cites W2147880316 @default.
- W3025458843 cites W2153579005 @default.
- W3025458843 cites W2171278097 @default.
- W3025458843 cites W2219598741 @default.
- W3025458843 cites W2286879430 @default.
- W3025458843 cites W2396767181 @default.
- W3025458843 cites W2463193237 @default.
- W3025458843 cites W2752172973 @default.
- W3025458843 cites W2772421299 @default.
- W3025458843 cites W277886906 @default.
- W3025458843 cites W2782912507 @default.
- W3025458843 cites W2796984089 @default.
- W3025458843 cites W2798836595 @default.
- W3025458843 cites W2798969345 @default.
- W3025458843 cites W2886424491 @default.
- W3025458843 cites W2889787757 @default.
- W3025458843 cites W2891304738 @default.
- W3025458843 cites W2896457183 @default.
- W3025458843 cites W2929410491 @default.
- W3025458843 cites W2948729947 @default.
- W3025458843 cites W2949117887 @default.
- W3025458843 cites W2951365061 @default.
- W3025458843 cites W2963105309 @default.
- W3025458843 cites W2964026269 @default.
- W3025458843 cites W2964328740 @default.
- W3025458843 cites W2972260442 @default.
- W3025458843 cites W2980185522 @default.
- W3025458843 cites W2983775871 @default.
- W3025458843 cites W2990192458 @default.
- W3025458843 cites W2990704537 @default.
- W3025458843 cites W3000292005 @default.
- W3025458843 cites W3082274269 @default.
- W3025458843 cites W3101600240 @default.
- W3025458843 cites W31369764 @default.
- W3025458843 cites W44265134 @default.
- W3025458843 cites W50182414 @default.
- W3025458843 cites W2525127255 @default.
- W3025458843 hasPublicationYear "2020" @default.
- W3025458843 type Work @default.
- W3025458843 sameAs 3025458843 @default.
- W3025458843 citedByCount "3" @default.
- W3025458843 countsByYear W30254588432020 @default.
- W3025458843 countsByYear W30254588432021 @default.
- W3025458843 crossrefType "posted-content" @default.
- W3025458843 hasAuthorship W3025458843A5017498603 @default.
- W3025458843 hasAuthorship W3025458843A5075825791 @default.
- W3025458843 hasAuthorship W3025458843A5077212858 @default.
- W3025458843 hasConcept C134306372 @default.
- W3025458843 hasConcept C154945302 @default.
- W3025458843 hasConcept C158129432 @default.
- W3025458843 hasConcept C162324750 @default.
- W3025458843 hasConcept C17744445 @default.
- W3025458843 hasConcept C187736073 @default.
- W3025458843 hasConcept C195324797 @default.
- W3025458843 hasConcept C199539241 @default.
- W3025458843 hasConcept C204321447 @default.
- W3025458843 hasConcept C2777351106 @default.
- W3025458843 hasConcept C2780451532 @default.
- W3025458843 hasConcept C33923547 @default.
- W3025458843 hasConcept C36503486 @default.
- W3025458843 hasConcept C41008148 @default.
- W3025458843 hasConcept C44291984 @default.
- W3025458843 hasConcept C554936623 @default.
- W3025458843 hasConceptScore W3025458843C134306372 @default.
- W3025458843 hasConceptScore W3025458843C154945302 @default.
- W3025458843 hasConceptScore W3025458843C158129432 @default.
- W3025458843 hasConceptScore W3025458843C162324750 @default.
- W3025458843 hasConceptScore W3025458843C17744445 @default.
- W3025458843 hasConceptScore W3025458843C187736073 @default.
- W3025458843 hasConceptScore W3025458843C195324797 @default.
- W3025458843 hasConceptScore W3025458843C199539241 @default.
- W3025458843 hasConceptScore W3025458843C204321447 @default.
- W3025458843 hasConceptScore W3025458843C2777351106 @default.