Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025470947> ?p ?o ?g. }
- W3025470947 endingPage "2116" @default.
- W3025470947 startingPage "2098" @default.
- W3025470947 abstract "Discovering a medication that suitable for all patients is not possible due to the fact that the reaction to medication may differ significantly across different patient subgroups. The heterogeneity of treatment effects is central to the agenda for both personalized medicine and treatment selection. To expedite the development of tailored therapies and improve the treatment efficacy, identification of subgroups that exhibit different treatment effects is thus playing an essential role. In this paper, we consider high-dimensional dense longitudinal observations which have frequent and large number of measurements with high-dimensional covariates. We offer a data-driven subgroup identification method, which incorporates the sparse boosting algorithm into homogeneity pursuit via change point detection. Extensive simulations are carried out to examine the performance of our proposed approach. We further illustrate our method by analyzing a wallaby growth dataset." @default.
- W3025470947 created "2020-05-21" @default.
- W3025470947 creator A5035046156 @default.
- W3025470947 creator A5040689829 @default.
- W3025470947 date "2020-05-15" @default.
- W3025470947 modified "2023-10-18" @default.
- W3025470947 title "A new approach of subgroup identification for high-dimensional longitudinal data" @default.
- W3025470947 cites W1913396203 @default.
- W3025470947 cites W1919599643 @default.
- W3025470947 cites W1973217014 @default.
- W3025470947 cites W1975505516 @default.
- W3025470947 cites W1976111164 @default.
- W3025470947 cites W1988790447 @default.
- W3025470947 cites W1992549534 @default.
- W3025470947 cites W1995824723 @default.
- W3025470947 cites W2012653948 @default.
- W3025470947 cites W2028214808 @default.
- W3025470947 cites W2045495405 @default.
- W3025470947 cites W2045803758 @default.
- W3025470947 cites W2049723111 @default.
- W3025470947 cites W2050031210 @default.
- W3025470947 cites W2056636001 @default.
- W3025470947 cites W2079139577 @default.
- W3025470947 cites W2088883866 @default.
- W3025470947 cites W2098421151 @default.
- W3025470947 cites W2135046866 @default.
- W3025470947 cites W2137155955 @default.
- W3025470947 cites W2162393482 @default.
- W3025470947 cites W2168196032 @default.
- W3025470947 cites W2321222970 @default.
- W3025470947 cites W2438485848 @default.
- W3025470947 cites W2467359528 @default.
- W3025470947 cites W2469479275 @default.
- W3025470947 cites W2476265589 @default.
- W3025470947 cites W2585846175 @default.
- W3025470947 cites W2594172108 @default.
- W3025470947 cites W2770077233 @default.
- W3025470947 cites W2898001576 @default.
- W3025470947 cites W2911068172 @default.
- W3025470947 cites W3022764617 @default.
- W3025470947 cites W3101310295 @default.
- W3025470947 cites W4205419814 @default.
- W3025470947 cites W4248244593 @default.
- W3025470947 cites W564695097 @default.
- W3025470947 doi "https://doi.org/10.1080/00949655.2020.1764555" @default.
- W3025470947 hasPublicationYear "2020" @default.
- W3025470947 type Work @default.
- W3025470947 sameAs 3025470947 @default.
- W3025470947 citedByCount "2" @default.
- W3025470947 countsByYear W30254709472021 @default.
- W3025470947 countsByYear W30254709472022 @default.
- W3025470947 crossrefType "journal-article" @default.
- W3025470947 hasAuthorship W3025470947A5035046156 @default.
- W3025470947 hasAuthorship W3025470947A5040689829 @default.
- W3025470947 hasConcept C105795698 @default.
- W3025470947 hasConcept C116834253 @default.
- W3025470947 hasConcept C119043178 @default.
- W3025470947 hasConcept C119857082 @default.
- W3025470947 hasConcept C124101348 @default.
- W3025470947 hasConcept C142259097 @default.
- W3025470947 hasConcept C148483581 @default.
- W3025470947 hasConcept C149782125 @default.
- W3025470947 hasConcept C154945302 @default.
- W3025470947 hasConcept C187960798 @default.
- W3025470947 hasConcept C2987370644 @default.
- W3025470947 hasConcept C3019722297 @default.
- W3025470947 hasConcept C3020672099 @default.
- W3025470947 hasConcept C32220436 @default.
- W3025470947 hasConcept C33923547 @default.
- W3025470947 hasConcept C41008148 @default.
- W3025470947 hasConcept C44249647 @default.
- W3025470947 hasConcept C46686674 @default.
- W3025470947 hasConcept C556039675 @default.
- W3025470947 hasConcept C59822182 @default.
- W3025470947 hasConcept C60644358 @default.
- W3025470947 hasConcept C71924100 @default.
- W3025470947 hasConcept C86803240 @default.
- W3025470947 hasConceptScore W3025470947C105795698 @default.
- W3025470947 hasConceptScore W3025470947C116834253 @default.
- W3025470947 hasConceptScore W3025470947C119043178 @default.
- W3025470947 hasConceptScore W3025470947C119857082 @default.
- W3025470947 hasConceptScore W3025470947C124101348 @default.
- W3025470947 hasConceptScore W3025470947C142259097 @default.
- W3025470947 hasConceptScore W3025470947C148483581 @default.
- W3025470947 hasConceptScore W3025470947C149782125 @default.
- W3025470947 hasConceptScore W3025470947C154945302 @default.
- W3025470947 hasConceptScore W3025470947C187960798 @default.
- W3025470947 hasConceptScore W3025470947C2987370644 @default.
- W3025470947 hasConceptScore W3025470947C3019722297 @default.
- W3025470947 hasConceptScore W3025470947C3020672099 @default.
- W3025470947 hasConceptScore W3025470947C32220436 @default.
- W3025470947 hasConceptScore W3025470947C33923547 @default.
- W3025470947 hasConceptScore W3025470947C41008148 @default.
- W3025470947 hasConceptScore W3025470947C44249647 @default.
- W3025470947 hasConceptScore W3025470947C46686674 @default.
- W3025470947 hasConceptScore W3025470947C556039675 @default.
- W3025470947 hasConceptScore W3025470947C59822182 @default.
- W3025470947 hasConceptScore W3025470947C60644358 @default.