Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025479648> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3025479648 endingPage "31" @default.
- W3025479648 startingPage "1" @default.
- W3025479648 abstract "A reformulation of the four color theorem is to say that K4 is the smallest graph to which every planar (loop-free) graph admits a homomorphism. Extending this theorem, the second author has proved (using the four color theorem) that the Clebsch graph (a well known triangle-free graph on 16 vertices) is a smallest graph to which every triangle-free planar graph admits a homomorphism. As a further generalization he has proposed that the projective cube of dimension 2k, PC(2k), (that is the Cayley graph (Z22k,{e1,e2,…,e2k,J}, where the ei's are the standard basis and J=e1+e2+⋯+e2k) is a smallest graph of odd-girth 2k+1 to which every planar graph of odd-girth at least 2k+1 admits a homomorphism. This conjecture is related to a conjecture of P. Seymour who claims that the fractional edge-chromatic number of a planar multigraph determines its edge-chromatic number (more precisely, Seymour conjectured that χ′(G)=⌈χf′(G)⌉ for any planar multigraph G). Note that the restriction of Seymour's conjecture to cubic (planar) graphs is Tait's reformulation of the four color theorem. Both these conjectures are believed to be true for the larger class of K5-minor-free graphs (which includes the class of planar graphs). Motivated by these conjectures and in extension of a recent work of L. Beaudou, F. Foucaud and the second author, which studies homomorphism bounds for the class of K4-minor-free graphs, in this work we first give a necessary and sufficient condition for a graph B of odd-girth 2k+1 to admit a homomorphism from any partial t-tree of odd-girth at least 2k+1. Applying our results to the class of partial 3-trees, which is a rich subclass of K5-minor-free graphs, we prove that PC(2k) is in fact a smallest graph of odd-girth 2k+1 to which every partial 3-tree of odd-girth at least 2k+1 admits a homomorphism. We then apply this result to show that every planar (2k+1)-regular multigraph G whose dual is a partial 3-tree, and whose fractional edge-chromatic number is 2k+1, is (2k+1)-edge-colorable. Both these results are the best known supports for the general cases of the above mentioned conjectures in extension of the four color theorem." @default.
- W3025479648 created "2020-05-21" @default.
- W3025479648 creator A5050560944 @default.
- W3025479648 creator A5064238350 @default.
- W3025479648 date "2020-11-01" @default.
- W3025479648 modified "2023-09-30" @default.
- W3025479648 title "Homomorphisms of partial t-trees and edge-colorings of partial 3-trees" @default.
- W3025479648 cites W1500536468 @default.
- W3025479648 cites W1584410877 @default.
- W3025479648 cites W1679590246 @default.
- W3025479648 cites W1891427623 @default.
- W3025479648 cites W1934376018 @default.
- W3025479648 cites W1989093143 @default.
- W3025479648 cites W2006860292 @default.
- W3025479648 cites W2024728183 @default.
- W3025479648 cites W2030092435 @default.
- W3025479648 cites W2059233598 @default.
- W3025479648 cites W2076369652 @default.
- W3025479648 cites W2094122366 @default.
- W3025479648 cites W2102761613 @default.
- W3025479648 cites W2104251191 @default.
- W3025479648 cites W2181493056 @default.
- W3025479648 cites W2462494491 @default.
- W3025479648 cites W3103228894 @default.
- W3025479648 doi "https://doi.org/10.1016/j.jctb.2020.04.002" @default.
- W3025479648 hasPublicationYear "2020" @default.
- W3025479648 type Work @default.
- W3025479648 sameAs 3025479648 @default.
- W3025479648 citedByCount "0" @default.
- W3025479648 crossrefType "journal-article" @default.
- W3025479648 hasAuthorship W3025479648A5050560944 @default.
- W3025479648 hasAuthorship W3025479648A5064238350 @default.
- W3025479648 hasBestOaLocation W30254796481 @default.
- W3025479648 hasConcept C100500283 @default.
- W3025479648 hasConcept C101837359 @default.
- W3025479648 hasConcept C102192266 @default.
- W3025479648 hasConcept C114614502 @default.
- W3025479648 hasConcept C114727528 @default.
- W3025479648 hasConcept C118615104 @default.
- W3025479648 hasConcept C123809776 @default.
- W3025479648 hasConcept C125792925 @default.
- W3025479648 hasConcept C132525143 @default.
- W3025479648 hasConcept C140752511 @default.
- W3025479648 hasConcept C149530733 @default.
- W3025479648 hasConcept C203776342 @default.
- W3025479648 hasConcept C206815938 @default.
- W3025479648 hasConcept C22149727 @default.
- W3025479648 hasConcept C2780990831 @default.
- W3025479648 hasConcept C28093856 @default.
- W3025479648 hasConcept C33923547 @default.
- W3025479648 hasConcept C4042151 @default.
- W3025479648 hasConcept C43517604 @default.
- W3025479648 hasConcept C7036158 @default.
- W3025479648 hasConcept C91233654 @default.
- W3025479648 hasConceptScore W3025479648C100500283 @default.
- W3025479648 hasConceptScore W3025479648C101837359 @default.
- W3025479648 hasConceptScore W3025479648C102192266 @default.
- W3025479648 hasConceptScore W3025479648C114614502 @default.
- W3025479648 hasConceptScore W3025479648C114727528 @default.
- W3025479648 hasConceptScore W3025479648C118615104 @default.
- W3025479648 hasConceptScore W3025479648C123809776 @default.
- W3025479648 hasConceptScore W3025479648C125792925 @default.
- W3025479648 hasConceptScore W3025479648C132525143 @default.
- W3025479648 hasConceptScore W3025479648C140752511 @default.
- W3025479648 hasConceptScore W3025479648C149530733 @default.
- W3025479648 hasConceptScore W3025479648C203776342 @default.
- W3025479648 hasConceptScore W3025479648C206815938 @default.
- W3025479648 hasConceptScore W3025479648C22149727 @default.
- W3025479648 hasConceptScore W3025479648C2780990831 @default.
- W3025479648 hasConceptScore W3025479648C28093856 @default.
- W3025479648 hasConceptScore W3025479648C33923547 @default.
- W3025479648 hasConceptScore W3025479648C4042151 @default.
- W3025479648 hasConceptScore W3025479648C43517604 @default.
- W3025479648 hasConceptScore W3025479648C7036158 @default.
- W3025479648 hasConceptScore W3025479648C91233654 @default.
- W3025479648 hasFunder F4320320883 @default.
- W3025479648 hasFunder F4320323190 @default.
- W3025479648 hasLocation W30254796481 @default.
- W3025479648 hasOpenAccess W3025479648 @default.
- W3025479648 hasPrimaryLocation W30254796481 @default.
- W3025479648 hasRelatedWork W1022854067 @default.
- W3025479648 hasRelatedWork W1985391430 @default.
- W3025479648 hasRelatedWork W1987952056 @default.
- W3025479648 hasRelatedWork W2017043109 @default.
- W3025479648 hasRelatedWork W2067362800 @default.
- W3025479648 hasRelatedWork W2473857262 @default.
- W3025479648 hasRelatedWork W2789779990 @default.
- W3025479648 hasRelatedWork W3025479648 @default.
- W3025479648 hasRelatedWork W3138268353 @default.
- W3025479648 hasRelatedWork W1508755082 @default.
- W3025479648 hasVolume "145" @default.
- W3025479648 isParatext "false" @default.
- W3025479648 isRetracted "false" @default.
- W3025479648 magId "3025479648" @default.
- W3025479648 workType "article" @default.