Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025502004> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3025502004 endingPage "169" @default.
- W3025502004 startingPage "162" @default.
- W3025502004 abstract "At present, the environment sound recognition system mainly identifies environment sounds with deep neural networks and a wide variety of auditory features. Therefore, it is necessary to analyze which auditory features are more suitable for deep neural networks based ESCR systems. In this paper, we chose three sound features which based on two widely used filters:the Mel and Gammatone filter banks. Subsequently, the hybrid feature MGCC is presented. Finally, a deep convolutional neural network is proposed to verify which features are more suitable for environment sound classification and recognition tasks. The experimental results show that the signal processing features are better than the spectrogram features in the deep neural network based environmental sound recognition system. Among all the acoustic features, the MGCC feature achieves the best performance than other features. Finally, the MGCC-CNN model proposed in this paper is compared with the state-of-the-art environmental sound classification models on the UrbanSound 8K dataset. The results show that the proposed model has the best classification accuracy." @default.
- W3025502004 created "2020-05-21" @default.
- W3025502004 creator A5026133893 @default.
- W3025502004 creator A5030064573 @default.
- W3025502004 creator A5034682544 @default.
- W3025502004 creator A5035085963 @default.
- W3025502004 creator A5071363803 @default.
- W3025502004 date "2020-02-01" @default.
- W3025502004 modified "2023-10-04" @default.
- W3025502004 title "Environment Sound Classification System Based on Hybrid Feature and Convolutional Neural Network" @default.
- W3025502004 cites W1964815273 @default.
- W3025502004 cites W1972567154 @default.
- W3025502004 cites W2038484192 @default.
- W3025502004 cites W2313745396 @default.
- W3025502004 cites W2517166312 @default.
- W3025502004 cites W2676925568 @default.
- W3025502004 cites W2766397045 @default.
- W3025502004 cites W2768083292 @default.
- W3025502004 doi "https://doi.org/10.1051/jnwpu/20203810162" @default.
- W3025502004 hasPublicationYear "2020" @default.
- W3025502004 type Work @default.
- W3025502004 sameAs 3025502004 @default.
- W3025502004 citedByCount "5" @default.
- W3025502004 countsByYear W30255020042022 @default.
- W3025502004 countsByYear W30255020042023 @default.
- W3025502004 crossrefType "journal-article" @default.
- W3025502004 hasAuthorship W3025502004A5026133893 @default.
- W3025502004 hasAuthorship W3025502004A5030064573 @default.
- W3025502004 hasAuthorship W3025502004A5034682544 @default.
- W3025502004 hasAuthorship W3025502004A5035085963 @default.
- W3025502004 hasAuthorship W3025502004A5071363803 @default.
- W3025502004 hasBestOaLocation W30255020041 @default.
- W3025502004 hasConcept C108583219 @default.
- W3025502004 hasConcept C138885662 @default.
- W3025502004 hasConcept C153180895 @default.
- W3025502004 hasConcept C154945302 @default.
- W3025502004 hasConcept C175202392 @default.
- W3025502004 hasConcept C2776401178 @default.
- W3025502004 hasConcept C28490314 @default.
- W3025502004 hasConcept C41008148 @default.
- W3025502004 hasConcept C41895202 @default.
- W3025502004 hasConcept C45273575 @default.
- W3025502004 hasConcept C50644808 @default.
- W3025502004 hasConcept C52622490 @default.
- W3025502004 hasConcept C81363708 @default.
- W3025502004 hasConceptScore W3025502004C108583219 @default.
- W3025502004 hasConceptScore W3025502004C138885662 @default.
- W3025502004 hasConceptScore W3025502004C153180895 @default.
- W3025502004 hasConceptScore W3025502004C154945302 @default.
- W3025502004 hasConceptScore W3025502004C175202392 @default.
- W3025502004 hasConceptScore W3025502004C2776401178 @default.
- W3025502004 hasConceptScore W3025502004C28490314 @default.
- W3025502004 hasConceptScore W3025502004C41008148 @default.
- W3025502004 hasConceptScore W3025502004C41895202 @default.
- W3025502004 hasConceptScore W3025502004C45273575 @default.
- W3025502004 hasConceptScore W3025502004C50644808 @default.
- W3025502004 hasConceptScore W3025502004C52622490 @default.
- W3025502004 hasConceptScore W3025502004C81363708 @default.
- W3025502004 hasIssue "1" @default.
- W3025502004 hasLocation W30255020041 @default.
- W3025502004 hasOpenAccess W3025502004 @default.
- W3025502004 hasPrimaryLocation W30255020041 @default.
- W3025502004 hasRelatedWork W2059299633 @default.
- W3025502004 hasRelatedWork W2279398222 @default.
- W3025502004 hasRelatedWork W2732542196 @default.
- W3025502004 hasRelatedWork W2738221750 @default.
- W3025502004 hasRelatedWork W2760085659 @default.
- W3025502004 hasRelatedWork W2773120646 @default.
- W3025502004 hasRelatedWork W2936488316 @default.
- W3025502004 hasRelatedWork W3011074480 @default.
- W3025502004 hasRelatedWork W3156786002 @default.
- W3025502004 hasRelatedWork W4299822940 @default.
- W3025502004 hasVolume "38" @default.
- W3025502004 isParatext "false" @default.
- W3025502004 isRetracted "false" @default.
- W3025502004 magId "3025502004" @default.
- W3025502004 workType "article" @default.