Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025535274> ?p ?o ?g. }
- W3025535274 abstract "Abstract Gene expression data features high dimensionality, multicollinearity, and the existence of outlier or non-Gaussian distribution noise, which make the identification of true regulatory genes controlling a biological process or pathway difficult. In this study, we embedded the Huber-Berhu (HB) regression into the partial least squares (PLS) framework and created a new method called HB-PLS for predicting biological process or pathway regulators through construction of regulatory networks. PLS is an alternative to ordinary least squares (OLS) for handling multicollinearity in high dimensional data. The Huber loss is more robust to outliers than square loss, and the Berhu penalty can obtain a better balance between the ℓ 2 penalty and the ℓ 1 penalty. HB-PLS therefore inherits the advantages of the Huber loss, the Berhu penalty, and PLS. To solve the Huber-Berhu regression, a fast proximal gradient descent method was developed; the HB regression runs much faster than CVX, a Matlab-based modeling system for convex optimization. Implementation of HB-PLS to real transcriptomic data from Arabidopsis and maize led to the identification of many pathway regulators that had previously been identified experimentally. In terms of its efficiency in identifying positive biological process or pathway regulators, HB-PLS is comparable to sparse partial least squares (SPLS), a very efficient method developed for variable selection and dimension reduction in handling multicollinearity in high dimensional genomic data. However, HB-PLS is able to identify some distinct regulators, and in one case identify more positive regulators at the top of output list, which can reduce the burden for experimental test of the identified candidate targets. Our study suggests that HB-PLS is instrumental for identifying biological process and pathway genes." @default.
- W3025535274 created "2020-05-21" @default.
- W3025535274 creator A5008473333 @default.
- W3025535274 creator A5020325112 @default.
- W3025535274 creator A5028686237 @default.
- W3025535274 creator A5049806537 @default.
- W3025535274 creator A5056152464 @default.
- W3025535274 creator A5072740925 @default.
- W3025535274 creator A5089772069 @default.
- W3025535274 date "2020-05-17" @default.
- W3025535274 modified "2023-09-25" @default.
- W3025535274 title "HB-PLS: An algorithm for identifying biological process or pathway regulators by integrating Huber loss and Berhu penalty with partial least squares regression" @default.
- W3025535274 cites W1937930873 @default.
- W3025535274 cites W1964169906 @default.
- W3025535274 cites W1969435618 @default.
- W3025535274 cites W1969547738 @default.
- W3025535274 cites W1973703105 @default.
- W3025535274 cites W1983965569 @default.
- W3025535274 cites W1992452843 @default.
- W3025535274 cites W2007014753 @default.
- W3025535274 cites W2016259455 @default.
- W3025535274 cites W2020311756 @default.
- W3025535274 cites W2020925091 @default.
- W3025535274 cites W2039989197 @default.
- W3025535274 cites W2044525257 @default.
- W3025535274 cites W2044809283 @default.
- W3025535274 cites W2063978378 @default.
- W3025535274 cites W2068766729 @default.
- W3025535274 cites W2082982706 @default.
- W3025535274 cites W2094558888 @default.
- W3025535274 cites W2099380913 @default.
- W3025535274 cites W2100556411 @default.
- W3025535274 cites W2107357525 @default.
- W3025535274 cites W2113355569 @default.
- W3025535274 cites W2117994680 @default.
- W3025535274 cites W2122708083 @default.
- W3025535274 cites W2122825543 @default.
- W3025535274 cites W2130187091 @default.
- W3025535274 cites W2135046866 @default.
- W3025535274 cites W2137864447 @default.
- W3025535274 cites W2138208575 @default.
- W3025535274 cites W2141458291 @default.
- W3025535274 cites W2144846813 @default.
- W3025535274 cites W2147326988 @default.
- W3025535274 cites W2147534083 @default.
- W3025535274 cites W2148612749 @default.
- W3025535274 cites W2154692414 @default.
- W3025535274 cites W2155361838 @default.
- W3025535274 cites W2157581457 @default.
- W3025535274 cites W2161868542 @default.
- W3025535274 cites W2165091352 @default.
- W3025535274 cites W2168215278 @default.
- W3025535274 cites W2170917242 @default.
- W3025535274 cites W2232588526 @default.
- W3025535274 cites W2263456395 @default.
- W3025535274 cites W2297570906 @default.
- W3025535274 cites W2480283529 @default.
- W3025535274 cites W2555661525 @default.
- W3025535274 cites W2585006614 @default.
- W3025535274 cites W2611370172 @default.
- W3025535274 cites W2737571707 @default.
- W3025535274 cites W2767505308 @default.
- W3025535274 cites W2790246716 @default.
- W3025535274 cites W2792844754 @default.
- W3025535274 cites W2884760647 @default.
- W3025535274 cites W2887175528 @default.
- W3025535274 cites W2904970666 @default.
- W3025535274 cites W2999418229 @default.
- W3025535274 cites W3098834468 @default.
- W3025535274 cites W3099289621 @default.
- W3025535274 cites W4238202755 @default.
- W3025535274 cites W4244393449 @default.
- W3025535274 cites W4255455317 @default.
- W3025535274 cites W70003281 @default.
- W3025535274 doi "https://doi.org/10.1101/2020.05.16.089623" @default.
- W3025535274 hasPublicationYear "2020" @default.
- W3025535274 type Work @default.
- W3025535274 sameAs 3025535274 @default.
- W3025535274 citedByCount "0" @default.
- W3025535274 crossrefType "posted-content" @default.
- W3025535274 hasAuthorship W3025535274A5008473333 @default.
- W3025535274 hasAuthorship W3025535274A5020325112 @default.
- W3025535274 hasAuthorship W3025535274A5028686237 @default.
- W3025535274 hasAuthorship W3025535274A5049806537 @default.
- W3025535274 hasAuthorship W3025535274A5056152464 @default.
- W3025535274 hasAuthorship W3025535274A5072740925 @default.
- W3025535274 hasAuthorship W3025535274A5089772069 @default.
- W3025535274 hasBestOaLocation W30255352741 @default.
- W3025535274 hasConcept C105795698 @default.
- W3025535274 hasConcept C11413529 @default.
- W3025535274 hasConcept C116834253 @default.
- W3025535274 hasConcept C154945302 @default.
- W3025535274 hasConcept C157553263 @default.
- W3025535274 hasConcept C189285262 @default.
- W3025535274 hasConcept C22354355 @default.
- W3025535274 hasConcept C33923547 @default.
- W3025535274 hasConcept C41008148 @default.
- W3025535274 hasConcept C48921125 @default.
- W3025535274 hasConcept C59822182 @default.
- W3025535274 hasConcept C70259352 @default.