Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025576434> ?p ?o ?g. }
- W3025576434 abstract "Abstract We propose SeqEnhDL, a deep learning framework for classifying cell type-specific enhancers based on sequence features. DNA sequences of “strong enhancer” chromatin states in nine cell types from the ENCODE project were retrieved to build and test enhancer classifiers. For any DNA sequence, sequential k -mer ( k =5, 7, 9 and 11) fold changes relative to randomly selected non-coding sequences were used as features for deep learning models. Three deep learning models were implemented, including multi-layer perceptron (MLP), Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). All models in SeqEnhDL outperform state-of-the-art enhancer classifiers including gkm-SVM and DanQ, with regard to distinguishing cell type-specific enhancers from randomly selected non-coding sequences. Moreover, SeqEnhDL is able to directly discriminate enhancers from different cell types, which has not been achieved by other enhancer classifiers. Our analysis suggests that both enhancers and their tissue-specificity can be accurately identified according to their sequence features. SeqEnhDL is publicly available at https://github.com/wyp1125/SeqEnhDL ." @default.
- W3025576434 created "2020-05-21" @default.
- W3025576434 creator A5026119192 @default.
- W3025576434 creator A5038367972 @default.
- W3025576434 creator A5058203848 @default.
- W3025576434 creator A5069220896 @default.
- W3025576434 creator A5077717253 @default.
- W3025576434 creator A5077759846 @default.
- W3025576434 date "2020-05-13" @default.
- W3025576434 modified "2023-09-23" @default.
- W3025576434 title "SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models" @default.
- W3025576434 cites W1019830208 @default.
- W3025576434 cites W1600524753 @default.
- W3025576434 cites W1885076136 @default.
- W3025576434 cites W1973556785 @default.
- W3025576434 cites W1981030303 @default.
- W3025576434 cites W1988581590 @default.
- W3025576434 cites W1989776482 @default.
- W3025576434 cites W1996760543 @default.
- W3025576434 cites W2011582941 @default.
- W3025576434 cites W2046842005 @default.
- W3025576434 cites W2057829817 @default.
- W3025576434 cites W2067103105 @default.
- W3025576434 cites W2074656730 @default.
- W3025576434 cites W2099343472 @default.
- W3025576434 cites W2104698381 @default.
- W3025576434 cites W2110554841 @default.
- W3025576434 cites W2115836056 @default.
- W3025576434 cites W2116251070 @default.
- W3025576434 cites W2117792884 @default.
- W3025576434 cites W2135993011 @default.
- W3025576434 cites W2139375925 @default.
- W3025576434 cites W2140240158 @default.
- W3025576434 cites W2142320568 @default.
- W3025576434 cites W2149575203 @default.
- W3025576434 cites W2149744269 @default.
- W3025576434 cites W2151754128 @default.
- W3025576434 cites W2152406028 @default.
- W3025576434 cites W2159164310 @default.
- W3025576434 cites W2167776710 @default.
- W3025576434 cites W2198606573 @default.
- W3025576434 cites W2259938310 @default.
- W3025576434 cites W2330303612 @default.
- W3025576434 cites W2336509392 @default.
- W3025576434 cites W2338148720 @default.
- W3025576434 cites W2502949459 @default.
- W3025576434 cites W2772741766 @default.
- W3025576434 cites W2783189800 @default.
- W3025576434 cites W2895933168 @default.
- W3025576434 cites W2950980382 @default.
- W3025576434 cites W2963393302 @default.
- W3025576434 doi "https://doi.org/10.1101/2020.05.13.093997" @default.
- W3025576434 hasPublicationYear "2020" @default.
- W3025576434 type Work @default.
- W3025576434 sameAs 3025576434 @default.
- W3025576434 citedByCount "1" @default.
- W3025576434 countsByYear W30255764342021 @default.
- W3025576434 crossrefType "posted-content" @default.
- W3025576434 hasAuthorship W3025576434A5026119192 @default.
- W3025576434 hasAuthorship W3025576434A5038367972 @default.
- W3025576434 hasAuthorship W3025576434A5058203848 @default.
- W3025576434 hasAuthorship W3025576434A5069220896 @default.
- W3025576434 hasAuthorship W3025576434A5077717253 @default.
- W3025576434 hasAuthorship W3025576434A5077759846 @default.
- W3025576434 hasBestOaLocation W30255764341 @default.
- W3025576434 hasConcept C104317684 @default.
- W3025576434 hasConcept C108583219 @default.
- W3025576434 hasConcept C111936080 @default.
- W3025576434 hasConcept C119857082 @default.
- W3025576434 hasConcept C12267149 @default.
- W3025576434 hasConcept C1491633281 @default.
- W3025576434 hasConcept C153180895 @default.
- W3025576434 hasConcept C154945302 @default.
- W3025576434 hasConcept C189014844 @default.
- W3025576434 hasConcept C2778112365 @default.
- W3025576434 hasConcept C41008148 @default.
- W3025576434 hasConcept C50644808 @default.
- W3025576434 hasConcept C54355233 @default.
- W3025576434 hasConcept C552990157 @default.
- W3025576434 hasConcept C60908668 @default.
- W3025576434 hasConcept C66746571 @default.
- W3025576434 hasConcept C70721500 @default.
- W3025576434 hasConcept C81363708 @default.
- W3025576434 hasConcept C83640560 @default.
- W3025576434 hasConcept C86339819 @default.
- W3025576434 hasConcept C86803240 @default.
- W3025576434 hasConceptScore W3025576434C104317684 @default.
- W3025576434 hasConceptScore W3025576434C108583219 @default.
- W3025576434 hasConceptScore W3025576434C111936080 @default.
- W3025576434 hasConceptScore W3025576434C119857082 @default.
- W3025576434 hasConceptScore W3025576434C12267149 @default.
- W3025576434 hasConceptScore W3025576434C1491633281 @default.
- W3025576434 hasConceptScore W3025576434C153180895 @default.
- W3025576434 hasConceptScore W3025576434C154945302 @default.
- W3025576434 hasConceptScore W3025576434C189014844 @default.
- W3025576434 hasConceptScore W3025576434C2778112365 @default.
- W3025576434 hasConceptScore W3025576434C41008148 @default.
- W3025576434 hasConceptScore W3025576434C50644808 @default.
- W3025576434 hasConceptScore W3025576434C54355233 @default.
- W3025576434 hasConceptScore W3025576434C552990157 @default.