Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025576489> ?p ?o ?g. }
- W3025576489 endingPage "2687" @default.
- W3025576489 startingPage "2676" @default.
- W3025576489 abstract "Deep learning (DL) has proved successful in medical imaging and, in the wake of the recent COVID-19 pandemic, some works have started to investigate DL-based solutions for the assisted diagnosis of lung diseases. While existing works focus on CT scans, this paper studies the application of DL techniques for the analysis of lung ultrasonography (LUS) images. Specifically, we present a novel fully-annotated dataset of LUS images collected from several Italian hospitals, with labels indicating the degree of disease severity at a frame-level, video-level, and pixel-level (segmentation masks). Leveraging these data, we introduce several deep models that address relevant tasks for the automatic analysis of LUS images. In particular, we present a novel deep network, derived from Spatial Transformer Networks, which simultaneously predicts the disease severity score associated to a input frame and provides localization of pathological artefacts in a weakly-supervised way. Furthermore, we introduce a new method based on uninorms for effective frame score aggregation at a video-level. Finally, we benchmark state of the art deep models for estimating pixel-level segmentations of COVID-19 imaging biomarkers. Experiments on the proposed dataset demonstrate satisfactory results on all the considered tasks, paving the way to future research on DL for the assisted diagnosis of COVID-19 from LUS data." @default.
- W3025576489 created "2020-05-21" @default.
- W3025576489 creator A5004358371 @default.
- W3025576489 creator A5005788917 @default.
- W3025576489 creator A5013467036 @default.
- W3025576489 creator A5015292074 @default.
- W3025576489 creator A5017995607 @default.
- W3025576489 creator A5021984927 @default.
- W3025576489 creator A5037398393 @default.
- W3025576489 creator A5042324065 @default.
- W3025576489 creator A5042985821 @default.
- W3025576489 creator A5044199452 @default.
- W3025576489 creator A5046536801 @default.
- W3025576489 creator A5052645912 @default.
- W3025576489 creator A5062855991 @default.
- W3025576489 creator A5065059558 @default.
- W3025576489 creator A5065490049 @default.
- W3025576489 creator A5066187890 @default.
- W3025576489 creator A5066230537 @default.
- W3025576489 creator A5067248600 @default.
- W3025576489 creator A5075600514 @default.
- W3025576489 creator A5079316363 @default.
- W3025576489 creator A5087182587 @default.
- W3025576489 creator A5087216614 @default.
- W3025576489 date "2020-08-01" @default.
- W3025576489 modified "2023-10-14" @default.
- W3025576489 title "Deep Learning for Classification and Localization of COVID-19 Markers in Point-of-Care Lung Ultrasound" @default.
- W3025576489 cites W2060878354 @default.
- W3025576489 cites W2123727507 @default.
- W3025576489 cites W2128735057 @default.
- W3025576489 cites W2132221661 @default.
- W3025576489 cites W2145679115 @default.
- W3025576489 cites W2170638036 @default.
- W3025576489 cites W2194775991 @default.
- W3025576489 cites W2295107390 @default.
- W3025576489 cites W2480642727 @default.
- W3025576489 cites W2509607465 @default.
- W3025576489 cites W2802130527 @default.
- W3025576489 cites W2884436604 @default.
- W3025576489 cites W2898643707 @default.
- W3025576489 cites W2913559493 @default.
- W3025576489 cites W2949208911 @default.
- W3025576489 cites W2962858109 @default.
- W3025576489 cites W2964218177 @default.
- W3025576489 cites W2965954137 @default.
- W3025576489 cites W2969265612 @default.
- W3025576489 cites W2969940716 @default.
- W3025576489 cites W2999355706 @default.
- W3025576489 cites W3005827208 @default.
- W3025576489 cites W3005879071 @default.
- W3025576489 cites W3006189429 @default.
- W3025576489 cites W3006882119 @default.
- W3025576489 cites W3010313912 @default.
- W3025576489 cites W3011035774 @default.
- W3025576489 cites W3011588331 @default.
- W3025576489 cites W3012211282 @default.
- W3025576489 cites W3012397613 @default.
- W3025576489 cites W3014558374 @default.
- W3025576489 cites W3016185001 @default.
- W3025576489 cites W3022592783 @default.
- W3025576489 cites W3037538421 @default.
- W3025576489 cites W3104810384 @default.
- W3025576489 doi "https://doi.org/10.1109/tmi.2020.2994459" @default.
- W3025576489 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32406829" @default.
- W3025576489 hasPublicationYear "2020" @default.
- W3025576489 type Work @default.
- W3025576489 sameAs 3025576489 @default.
- W3025576489 citedByCount "385" @default.
- W3025576489 countsByYear W30255764892020 @default.
- W3025576489 countsByYear W30255764892021 @default.
- W3025576489 countsByYear W30255764892022 @default.
- W3025576489 countsByYear W30255764892023 @default.
- W3025576489 crossrefType "journal-article" @default.
- W3025576489 hasAuthorship W3025576489A5004358371 @default.
- W3025576489 hasAuthorship W3025576489A5005788917 @default.
- W3025576489 hasAuthorship W3025576489A5013467036 @default.
- W3025576489 hasAuthorship W3025576489A5015292074 @default.
- W3025576489 hasAuthorship W3025576489A5017995607 @default.
- W3025576489 hasAuthorship W3025576489A5021984927 @default.
- W3025576489 hasAuthorship W3025576489A5037398393 @default.
- W3025576489 hasAuthorship W3025576489A5042324065 @default.
- W3025576489 hasAuthorship W3025576489A5042985821 @default.
- W3025576489 hasAuthorship W3025576489A5044199452 @default.
- W3025576489 hasAuthorship W3025576489A5046536801 @default.
- W3025576489 hasAuthorship W3025576489A5052645912 @default.
- W3025576489 hasAuthorship W3025576489A5062855991 @default.
- W3025576489 hasAuthorship W3025576489A5065059558 @default.
- W3025576489 hasAuthorship W3025576489A5065490049 @default.
- W3025576489 hasAuthorship W3025576489A5066187890 @default.
- W3025576489 hasAuthorship W3025576489A5066230537 @default.
- W3025576489 hasAuthorship W3025576489A5067248600 @default.
- W3025576489 hasAuthorship W3025576489A5075600514 @default.
- W3025576489 hasAuthorship W3025576489A5079316363 @default.
- W3025576489 hasAuthorship W3025576489A5087182587 @default.
- W3025576489 hasAuthorship W3025576489A5087216614 @default.
- W3025576489 hasBestOaLocation W30255764891 @default.
- W3025576489 hasConcept C108583219 @default.
- W3025576489 hasConcept C124504099 @default.