Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025593802> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3025593802 endingPage "037132" @default.
- W3025593802 startingPage "037132" @default.
- W3025593802 abstract "Data-driven methods have recently made great progress in the discovery of partial differential equations (PDEs) from spatial-temporal data. However, several challenges remain to be solved, including sparse noisy data, incomplete candidate library, and spatially- or temporally-varying coefficients. In this work, a new framework, which combines neural network, genetic algorithm and adaptive methods, is put forward to address all of these challenges simultaneously. In the framework, a trained neural network is utilized to calculate derivatives and generate a large amount of meta-data, which solves the problem of sparse noisy data. Next, genetic algorithm is utilized to discover the form of PDEs and corresponding coefficients with an incomplete candidate library. Finally, a two-step adaptive method is introduced to discover parametric PDEs with spatially- or temporally-varying coefficients. In this method, the structure of a parametric PDE is first discovered, and then the general form of varying coefficients is identified. The proposed algorithm is tested on the Burgers equation, the convection-diffusion equation, the wave equation, and the KdV equation. The results demonstrate that this method is robust to sparse and noisy data, and is able to discover parametric PDEs with an incomplete candidate library." @default.
- W3025593802 created "2020-05-21" @default.
- W3025593802 creator A5004683698 @default.
- W3025593802 creator A5043667011 @default.
- W3025593802 creator A5090508999 @default.
- W3025593802 date "2021-03-01" @default.
- W3025593802 modified "2023-10-12" @default.
- W3025593802 title "Deep-learning of parametric partial differential equations from sparse and noisy data" @default.
- W3025593802 cites W2100921809 @default.
- W3025593802 cites W2188581537 @default.
- W3025593802 cites W2239232218 @default.
- W3025593802 cites W2525748878 @default.
- W3025593802 cites W2740145400 @default.
- W3025593802 cites W2889523591 @default.
- W3025593802 cites W2898608201 @default.
- W3025593802 cites W2899283552 @default.
- W3025593802 cites W2903660960 @default.
- W3025593802 cites W2938255066 @default.
- W3025593802 cites W2951629468 @default.
- W3025593802 cites W2959482009 @default.
- W3025593802 cites W2964079102 @default.
- W3025593802 cites W2999572625 @default.
- W3025593802 cites W3002919193 @default.
- W3025593802 cites W3038530333 @default.
- W3025593802 doi "https://doi.org/10.1063/5.0042868" @default.
- W3025593802 hasPublicationYear "2021" @default.
- W3025593802 type Work @default.
- W3025593802 sameAs 3025593802 @default.
- W3025593802 citedByCount "30" @default.
- W3025593802 countsByYear W30255938022021 @default.
- W3025593802 countsByYear W30255938022022 @default.
- W3025593802 countsByYear W30255938022023 @default.
- W3025593802 crossrefType "journal-article" @default.
- W3025593802 hasAuthorship W3025593802A5004683698 @default.
- W3025593802 hasAuthorship W3025593802A5043667011 @default.
- W3025593802 hasAuthorship W3025593802A5090508999 @default.
- W3025593802 hasBestOaLocation W30255938021 @default.
- W3025593802 hasConcept C105795698 @default.
- W3025593802 hasConcept C11413529 @default.
- W3025593802 hasConcept C117251300 @default.
- W3025593802 hasConcept C121332964 @default.
- W3025593802 hasConcept C129747778 @default.
- W3025593802 hasConcept C146630112 @default.
- W3025593802 hasConcept C154945302 @default.
- W3025593802 hasConcept C158622935 @default.
- W3025593802 hasConcept C28826006 @default.
- W3025593802 hasConcept C33923547 @default.
- W3025593802 hasConcept C41008148 @default.
- W3025593802 hasConcept C50644808 @default.
- W3025593802 hasConcept C62520636 @default.
- W3025593802 hasConcept C93779851 @default.
- W3025593802 hasConceptScore W3025593802C105795698 @default.
- W3025593802 hasConceptScore W3025593802C11413529 @default.
- W3025593802 hasConceptScore W3025593802C117251300 @default.
- W3025593802 hasConceptScore W3025593802C121332964 @default.
- W3025593802 hasConceptScore W3025593802C129747778 @default.
- W3025593802 hasConceptScore W3025593802C146630112 @default.
- W3025593802 hasConceptScore W3025593802C154945302 @default.
- W3025593802 hasConceptScore W3025593802C158622935 @default.
- W3025593802 hasConceptScore W3025593802C28826006 @default.
- W3025593802 hasConceptScore W3025593802C33923547 @default.
- W3025593802 hasConceptScore W3025593802C41008148 @default.
- W3025593802 hasConceptScore W3025593802C50644808 @default.
- W3025593802 hasConceptScore W3025593802C62520636 @default.
- W3025593802 hasConceptScore W3025593802C93779851 @default.
- W3025593802 hasFunder F4320321001 @default.
- W3025593802 hasIssue "3" @default.
- W3025593802 hasLocation W30255938021 @default.
- W3025593802 hasLocation W30255938022 @default.
- W3025593802 hasOpenAccess W3025593802 @default.
- W3025593802 hasPrimaryLocation W30255938021 @default.
- W3025593802 hasRelatedWork W2158731357 @default.
- W3025593802 hasRelatedWork W2171321613 @default.
- W3025593802 hasRelatedWork W2351208265 @default.
- W3025593802 hasRelatedWork W2359206539 @default.
- W3025593802 hasRelatedWork W2368637410 @default.
- W3025593802 hasRelatedWork W2471685969 @default.
- W3025593802 hasRelatedWork W3150801941 @default.
- W3025593802 hasRelatedWork W3213198455 @default.
- W3025593802 hasRelatedWork W4232257209 @default.
- W3025593802 hasRelatedWork W4313143217 @default.
- W3025593802 hasVolume "33" @default.
- W3025593802 isParatext "false" @default.
- W3025593802 isRetracted "false" @default.
- W3025593802 magId "3025593802" @default.
- W3025593802 workType "article" @default.