Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025641753> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3025641753 endingPage "95377" @default.
- W3025641753 startingPage "95368" @default.
- W3025641753 abstract "With the development of computer network technology and the expansion of network system, sensitive data is facing the threat of hacker attack. Intrusion detection is an active network security defense measure, which is an attempt to invade, an ongoing intrusion or an intrusion that has occurred to identify the process. At present, the detection rate of intrusion detection method is low, the false alarm rate and false alarm rate is high, and the real-time performance is poor. It needs a large number of or complete data to achieve better detection performance. In this paper, the concept, characteristics, classification, research contents and difficulties of traditional intrusion detection for mass multimedia data transmission network are described. Then, the basic principle of neural network and particle swarm optimization (PSO) algorithm and the basic idea of particle swarm optimization algorithm with quantum (QPSO) behaviour are introduced. It is emphasized that QPSO has better convergence performance than PSO algorithm in global optimization problems. In this paper, the concept, characteristics and structure of neural network are described, and the algorithm and classification of wavelet neural network are introduced. Then taking wavelet neural network (WNN) as the object, using the QPSO algorithm as the training algorithm, the concrete operation process is given. The research work in this paper shows that the performance of neural network trained by QPSO algorithm and improved QPSO algorithm is better than that of other intelligent algorithms such as PSO algorithm and genetic algorithm, and the convergence speed is faster than that of PSO algorithm or GA algorithm. QPSO is a high performance neural network training algorithm, which can play a good role in neural network anomaly detection." @default.
- W3025641753 created "2020-05-21" @default.
- W3025641753 creator A5014021524 @default.
- W3025641753 date "2020-01-01" @default.
- W3025641753 modified "2023-10-14" @default.
- W3025641753 title "Research on Anomaly Detection in Massive Multimedia Data Transmission Network Based on Improved PSO Algorithm" @default.
- W3025641753 cites W1916641694 @default.
- W3025641753 cites W1963757997 @default.
- W3025641753 cites W1964236997 @default.
- W3025641753 cites W1966926299 @default.
- W3025641753 cites W1978035113 @default.
- W3025641753 cites W1984921330 @default.
- W3025641753 cites W2012118327 @default.
- W3025641753 cites W2056180942 @default.
- W3025641753 cites W2067218244 @default.
- W3025641753 cites W2094438713 @default.
- W3025641753 cites W2142477714 @default.
- W3025641753 cites W2225976211 @default.
- W3025641753 cites W2284345327 @default.
- W3025641753 cites W2319053646 @default.
- W3025641753 cites W2460044394 @default.
- W3025641753 cites W2460485004 @default.
- W3025641753 cites W2506115675 @default.
- W3025641753 cites W2531036941 @default.
- W3025641753 cites W2559793453 @default.
- W3025641753 cites W2567702993 @default.
- W3025641753 cites W2574547022 @default.
- W3025641753 cites W2734459438 @default.
- W3025641753 cites W2762210773 @default.
- W3025641753 cites W2765922491 @default.
- W3025641753 cites W2783057440 @default.
- W3025641753 cites W2792668765 @default.
- W3025641753 cites W2797700545 @default.
- W3025641753 cites W2887536536 @default.
- W3025641753 doi "https://doi.org/10.1109/access.2020.2994578" @default.
- W3025641753 hasPublicationYear "2020" @default.
- W3025641753 type Work @default.
- W3025641753 sameAs 3025641753 @default.
- W3025641753 citedByCount "12" @default.
- W3025641753 countsByYear W30256417532021 @default.
- W3025641753 countsByYear W30256417532022 @default.
- W3025641753 countsByYear W30256417532023 @default.
- W3025641753 crossrefType "journal-article" @default.
- W3025641753 hasAuthorship W3025641753A5014021524 @default.
- W3025641753 hasBestOaLocation W30256417531 @default.
- W3025641753 hasConcept C11413529 @default.
- W3025641753 hasConcept C121332964 @default.
- W3025641753 hasConcept C12997251 @default.
- W3025641753 hasConcept C154945302 @default.
- W3025641753 hasConcept C26873012 @default.
- W3025641753 hasConcept C41008148 @default.
- W3025641753 hasConcept C739882 @default.
- W3025641753 hasConcept C761482 @default.
- W3025641753 hasConcept C76155785 @default.
- W3025641753 hasConceptScore W3025641753C11413529 @default.
- W3025641753 hasConceptScore W3025641753C121332964 @default.
- W3025641753 hasConceptScore W3025641753C12997251 @default.
- W3025641753 hasConceptScore W3025641753C154945302 @default.
- W3025641753 hasConceptScore W3025641753C26873012 @default.
- W3025641753 hasConceptScore W3025641753C41008148 @default.
- W3025641753 hasConceptScore W3025641753C739882 @default.
- W3025641753 hasConceptScore W3025641753C761482 @default.
- W3025641753 hasConceptScore W3025641753C76155785 @default.
- W3025641753 hasLocation W30256417531 @default.
- W3025641753 hasLocation W30256417532 @default.
- W3025641753 hasOpenAccess W3025641753 @default.
- W3025641753 hasPrimaryLocation W30256417531 @default.
- W3025641753 hasRelatedWork W2143820878 @default.
- W3025641753 hasRelatedWork W2352396352 @default.
- W3025641753 hasRelatedWork W2806741695 @default.
- W3025641753 hasRelatedWork W2912112202 @default.
- W3025641753 hasRelatedWork W3189286258 @default.
- W3025641753 hasRelatedWork W3207797160 @default.
- W3025641753 hasRelatedWork W3210364259 @default.
- W3025641753 hasRelatedWork W4285195761 @default.
- W3025641753 hasRelatedWork W4290647774 @default.
- W3025641753 hasRelatedWork W4300558037 @default.
- W3025641753 hasVolume "8" @default.
- W3025641753 isParatext "false" @default.
- W3025641753 isRetracted "false" @default.
- W3025641753 magId "3025641753" @default.
- W3025641753 workType "article" @default.