Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025643212> ?p ?o ?g. }
- W3025643212 endingPage "4826" @default.
- W3025643212 startingPage "4813" @default.
- W3025643212 abstract "Experimentally, the thermal gas-phase deazetization of 2,3-diazabicyclo[2.2.1]hept-2-ene (1) results in the loss of N2 and the formation of bicyclo products 3 (exo) and 4 (endo) in a nonstatistical ratio, with preference for the exo product. Here, we report unrestricted M06-2X quasiclassical trajectories initialized from the concerted N2 ejection transition state that were able to replicate the experimental preference to form 3. We found that the 3:4 ratio results from the relative amounts of very fast (ballistic) exotype trajectories versus trajectories that lead to the 1,3-diradical intermediate 2. These quasiclassical trajectories provided a set of transition-state vibrational, velocity, momenta, and geometric features for the machine learning analysis. A selection of popular supervised classification algorithms (e.g., random forest) provided poor prediction of trajectory outcomes based on only transition-state vibrational quanta and energy features. However, these machine learning models provided more accurate predictions using atomic velocities and atomic positions, attaining ∼70% accuracy using initial conditions and between 85 and 95% accuracy at later reaction time steps. This increased accuracy allowed the feature importance analysis to reveal that, at the later-time analysis, the methylene bridge out-of-plane bending is correlated with trajectory outcomes for the formation of either the exo product or toward the diradical intermediate. Possible reasons for the struggle of machine learning algorithms to classify trajectories based on transition-state features is the heavily overlapping feature values, the finite but very large possible vibrational mode combinations, and the possibility of chaos as trajectories propagate. We examined this chaos by comparing a set of nearly identical trajectories that differed by only a very small scaling of the kinetic energies resulting from the transition-state reaction coordinate." @default.
- W3025643212 created "2020-05-21" @default.
- W3025643212 creator A5000530396 @default.
- W3025643212 creator A5014809307 @default.
- W3025643212 creator A5027532304 @default.
- W3025643212 creator A5029749176 @default.
- W3025643212 creator A5049762290 @default.
- W3025643212 creator A5058801864 @default.
- W3025643212 creator A5061587270 @default.
- W3025643212 creator A5085521803 @default.
- W3025643212 creator A5086726463 @default.
- W3025643212 date "2020-05-15" @default.
- W3025643212 modified "2023-10-14" @default.
- W3025643212 title "Machine Learning Analysis of Direct Dynamics Trajectory Outcomes for Thermal Deazetization of 2,3-Diazabicyclo[2.2.1]hept-2-ene" @default.
- W3025643212 cites W1965967179 @default.
- W3025643212 cites W1968984628 @default.
- W3025643212 cites W1978064400 @default.
- W3025643212 cites W1979607145 @default.
- W3025643212 cites W1982051564 @default.
- W3025643212 cites W1987695074 @default.
- W3025643212 cites W1991093311 @default.
- W3025643212 cites W1992424840 @default.
- W3025643212 cites W1994938313 @default.
- W3025643212 cites W2004906431 @default.
- W3025643212 cites W2006311020 @default.
- W3025643212 cites W2020751841 @default.
- W3025643212 cites W2022725549 @default.
- W3025643212 cites W2034019990 @default.
- W3025643212 cites W2038603430 @default.
- W3025643212 cites W2066539787 @default.
- W3025643212 cites W2068425827 @default.
- W3025643212 cites W2071654274 @default.
- W3025643212 cites W2075123098 @default.
- W3025643212 cites W2076068479 @default.
- W3025643212 cites W2077344532 @default.
- W3025643212 cites W2095374685 @default.
- W3025643212 cites W2164857730 @default.
- W3025643212 cites W2217361036 @default.
- W3025643212 cites W2312678554 @default.
- W3025643212 cites W2319509308 @default.
- W3025643212 cites W2319586858 @default.
- W3025643212 cites W2322667036 @default.
- W3025643212 cites W2324918829 @default.
- W3025643212 cites W2332703637 @default.
- W3025643212 cites W2598119578 @default.
- W3025643212 cites W2604642583 @default.
- W3025643212 cites W2616959743 @default.
- W3025643212 cites W2618127644 @default.
- W3025643212 cites W2619447911 @default.
- W3025643212 cites W2762918104 @default.
- W3025643212 cites W2763212588 @default.
- W3025643212 cites W2887606074 @default.
- W3025643212 cites W2895042041 @default.
- W3025643212 cites W2895198256 @default.
- W3025643212 cites W2898289656 @default.
- W3025643212 cites W2906453878 @default.
- W3025643212 cites W2909815823 @default.
- W3025643212 cites W2952131757 @default.
- W3025643212 doi "https://doi.org/10.1021/acs.jpca.9b10410" @default.
- W3025643212 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32412755" @default.
- W3025643212 hasPublicationYear "2020" @default.
- W3025643212 type Work @default.
- W3025643212 sameAs 3025643212 @default.
- W3025643212 citedByCount "7" @default.
- W3025643212 countsByYear W30256432122021 @default.
- W3025643212 countsByYear W30256432122022 @default.
- W3025643212 countsByYear W30256432122023 @default.
- W3025643212 crossrefType "journal-article" @default.
- W3025643212 hasAuthorship W3025643212A5000530396 @default.
- W3025643212 hasAuthorship W3025643212A5014809307 @default.
- W3025643212 hasAuthorship W3025643212A5027532304 @default.
- W3025643212 hasAuthorship W3025643212A5029749176 @default.
- W3025643212 hasAuthorship W3025643212A5049762290 @default.
- W3025643212 hasAuthorship W3025643212A5058801864 @default.
- W3025643212 hasAuthorship W3025643212A5061587270 @default.
- W3025643212 hasAuthorship W3025643212A5085521803 @default.
- W3025643212 hasAuthorship W3025643212A5086726463 @default.
- W3025643212 hasBestOaLocation W30256432122 @default.
- W3025643212 hasConcept C117633835 @default.
- W3025643212 hasConcept C121332964 @default.
- W3025643212 hasConcept C13662910 @default.
- W3025643212 hasConcept C138885662 @default.
- W3025643212 hasConcept C147597530 @default.
- W3025643212 hasConcept C154945302 @default.
- W3025643212 hasConcept C181500209 @default.
- W3025643212 hasConcept C184779094 @default.
- W3025643212 hasConcept C185592680 @default.
- W3025643212 hasConcept C2776401178 @default.
- W3025643212 hasConcept C33062035 @default.
- W3025643212 hasConcept C41008148 @default.
- W3025643212 hasConcept C41895202 @default.
- W3025643212 hasConcept C62520636 @default.
- W3025643212 hasConceptScore W3025643212C117633835 @default.
- W3025643212 hasConceptScore W3025643212C121332964 @default.
- W3025643212 hasConceptScore W3025643212C13662910 @default.
- W3025643212 hasConceptScore W3025643212C138885662 @default.
- W3025643212 hasConceptScore W3025643212C147597530 @default.
- W3025643212 hasConceptScore W3025643212C154945302 @default.