Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025676872> ?p ?o ?g. }
- W3025676872 endingPage "547" @default.
- W3025676872 startingPage "547" @default.
- W3025676872 abstract "The study investigates the potential of two new machine learning methods, least-square support vector regression with a gravitational search algorithm (LSSVR-GSA) and the dynamic evolving neural-fuzzy inference system (DENFIS), for modeling reference evapotranspiration (ETo) using limited data. The results of the new methods are compared with the M5 model tree (M5RT) approach. Previous values of temperature data and extraterrestrial radiation information obtained from three stations, in China, are used as inputs to the models. The estimation exactness of the models is measured by three statistics: root mean square error, mean absolute error, and determination coefficient. According to the results, the temperature or extraterrestrial radiation-based LSSVR-GSA models perform superiorly to the DENFIS and M5RT models in terms of estimating monthly ETo. However, in some cases, a slight difference was found between the LSSVR-GSA and DENFIS methods. The results indicate that better prediction accuracy may be obtained using only extraterrestrial radiation information for all three methods. The prediction accuracy of the models is not generally improved by including periodicity information in the inputs. Using optimum air temperature and extraterrestrial radiation inputs together generally does not increase the accuracy of the applied methods in the estimation of monthly ETo." @default.
- W3025676872 created "2020-05-21" @default.
- W3025676872 creator A5004596965 @default.
- W3025676872 creator A5005262926 @default.
- W3025676872 creator A5008179908 @default.
- W3025676872 creator A5022052919 @default.
- W3025676872 creator A5075190563 @default.
- W3025676872 creator A5081035598 @default.
- W3025676872 date "2020-05-13" @default.
- W3025676872 modified "2023-10-18" @default.
- W3025676872 title "Reference Evapotranspiration Modeling Using New Heuristic Methods" @default.
- W3025676872 cites W1109078837 @default.
- W3025676872 cites W1975827138 @default.
- W3025676872 cites W1978128908 @default.
- W3025676872 cites W1993752546 @default.
- W3025676872 cites W1996580130 @default.
- W3025676872 cites W1997175741 @default.
- W3025676872 cites W2007495462 @default.
- W3025676872 cites W2032734256 @default.
- W3025676872 cites W2038578397 @default.
- W3025676872 cites W2041243118 @default.
- W3025676872 cites W2043360138 @default.
- W3025676872 cites W2061309384 @default.
- W3025676872 cites W2072955302 @default.
- W3025676872 cites W2080589721 @default.
- W3025676872 cites W2082192822 @default.
- W3025676872 cites W2086118649 @default.
- W3025676872 cites W2086553662 @default.
- W3025676872 cites W2162635690 @default.
- W3025676872 cites W2205990099 @default.
- W3025676872 cites W2323316069 @default.
- W3025676872 cites W2550809872 @default.
- W3025676872 cites W2565536624 @default.
- W3025676872 cites W2574416852 @default.
- W3025676872 cites W2605499195 @default.
- W3025676872 cites W2741605009 @default.
- W3025676872 cites W2755773393 @default.
- W3025676872 cites W2759129236 @default.
- W3025676872 cites W2790705499 @default.
- W3025676872 cites W2791896807 @default.
- W3025676872 cites W2791937529 @default.
- W3025676872 cites W2795158198 @default.
- W3025676872 cites W2804523998 @default.
- W3025676872 cites W2808724894 @default.
- W3025676872 cites W2810019569 @default.
- W3025676872 cites W2885623073 @default.
- W3025676872 cites W2888495088 @default.
- W3025676872 cites W2910507857 @default.
- W3025676872 cites W2920998881 @default.
- W3025676872 cites W2942851257 @default.
- W3025676872 cites W2957731227 @default.
- W3025676872 cites W2964253828 @default.
- W3025676872 cites W2978560988 @default.
- W3025676872 cites W2979390061 @default.
- W3025676872 cites W2991306453 @default.
- W3025676872 cites W588468042 @default.
- W3025676872 cites W836867855 @default.
- W3025676872 doi "https://doi.org/10.3390/e22050547" @default.
- W3025676872 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7517042" @default.
- W3025676872 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33286320" @default.
- W3025676872 hasPublicationYear "2020" @default.
- W3025676872 type Work @default.
- W3025676872 sameAs 3025676872 @default.
- W3025676872 citedByCount "31" @default.
- W3025676872 countsByYear W30256768722020 @default.
- W3025676872 countsByYear W30256768722021 @default.
- W3025676872 countsByYear W30256768722022 @default.
- W3025676872 countsByYear W30256768722023 @default.
- W3025676872 crossrefType "journal-article" @default.
- W3025676872 hasAuthorship W3025676872A5004596965 @default.
- W3025676872 hasAuthorship W3025676872A5005262926 @default.
- W3025676872 hasAuthorship W3025676872A5008179908 @default.
- W3025676872 hasAuthorship W3025676872A5022052919 @default.
- W3025676872 hasAuthorship W3025676872A5075190563 @default.
- W3025676872 hasAuthorship W3025676872A5081035598 @default.
- W3025676872 hasBestOaLocation W30256768721 @default.
- W3025676872 hasConcept C105795698 @default.
- W3025676872 hasConcept C11413529 @default.
- W3025676872 hasConcept C119857082 @default.
- W3025676872 hasConcept C12267149 @default.
- W3025676872 hasConcept C124101348 @default.
- W3025676872 hasConcept C139945424 @default.
- W3025676872 hasConcept C154945302 @default.
- W3025676872 hasConcept C173801870 @default.
- W3025676872 hasConcept C176783924 @default.
- W3025676872 hasConcept C18903297 @default.
- W3025676872 hasConcept C33923547 @default.
- W3025676872 hasConcept C41008148 @default.
- W3025676872 hasConcept C86803240 @default.
- W3025676872 hasConceptScore W3025676872C105795698 @default.
- W3025676872 hasConceptScore W3025676872C11413529 @default.
- W3025676872 hasConceptScore W3025676872C119857082 @default.
- W3025676872 hasConceptScore W3025676872C12267149 @default.
- W3025676872 hasConceptScore W3025676872C124101348 @default.
- W3025676872 hasConceptScore W3025676872C139945424 @default.
- W3025676872 hasConceptScore W3025676872C154945302 @default.
- W3025676872 hasConceptScore W3025676872C173801870 @default.
- W3025676872 hasConceptScore W3025676872C176783924 @default.