Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025730045> ?p ?o ?g. }
- W3025730045 endingPage "263" @default.
- W3025730045 startingPage "263" @default.
- W3025730045 abstract "Abstract The ability to generate physically plausible ensembles of variable sources is critical to the optimization of time domain survey cadences and the training of classification models on data sets with few to no labels. Traditional data augmentation techniques expand training sets by reenvisioning observed exemplars, seeking to simulate observations of specific training sources under different (exogenous) conditions. Unlike fully theory-driven models, these approaches do not typically allow principled interpolation nor extrapolation. Moreover, the principal drawback of theory-driven models lies in the prohibitive computational cost of simulating source observables from ab initio parameters. In this work, we propose a computationally tractable machine learning approach to generate realistic light curves of periodic variables capable of integrating physical parameters and variability classes as inputs. Our deep generative model, inspired by the transparent latent space generative adversarial networks, uses a variational autoencoder (VAE) architecture with temporal convolutional network layers, trained using the OGLE-III optical light curves and physical characteristics (e.g., effective temperature and absolute magnitude) from Gaia DR2. A test using the temperature–shape relationship of RR Lyrae demonstrates the efficacy of our generative “physics-enhanced latent space VAE” (PELS-VAE) model. Such deep generative models, serving as nonlinear nonparametric emulators, present a novel tool for astronomers to create synthetic time series over arbitrary cadences." @default.
- W3025730045 created "2020-05-21" @default.
- W3025730045 creator A5012189438 @default.
- W3025730045 creator A5053766501 @default.
- W3025730045 creator A5068837797 @default.
- W3025730045 date "2022-11-30" @default.
- W3025730045 modified "2023-09-30" @default.
- W3025730045 title "Deep Generative Modeling of Periodic Variable Stars Using Physical Parameters" @default.
- W3025730045 cites W147232447 @default.
- W3025730045 cites W1955749736 @default.
- W3025730045 cites W1965555277 @default.
- W3025730045 cites W1966372232 @default.
- W3025730045 cites W1973468302 @default.
- W3025730045 cites W1985027493 @default.
- W3025730045 cites W2011301426 @default.
- W3025730045 cites W2011614275 @default.
- W3025730045 cites W2034214451 @default.
- W3025730045 cites W2037483907 @default.
- W3025730045 cites W2044738244 @default.
- W3025730045 cites W2064675550 @default.
- W3025730045 cites W2100495367 @default.
- W3025730045 cites W2107878631 @default.
- W3025730045 cites W2146292423 @default.
- W3025730045 cites W2236950862 @default.
- W3025730045 cites W2292579160 @default.
- W3025730045 cites W2342249984 @default.
- W3025730045 cites W2513183988 @default.
- W3025730045 cites W2564484065 @default.
- W3025730045 cites W2581074048 @default.
- W3025730045 cites W2798336535 @default.
- W3025730045 cites W2896174860 @default.
- W3025730045 cites W2905450617 @default.
- W3025730045 cites W2915006163 @default.
- W3025730045 cites W2923557884 @default.
- W3025730045 cites W2947437290 @default.
- W3025730045 cites W2963419395 @default.
- W3025730045 cites W2983085095 @default.
- W3025730045 cites W2992995562 @default.
- W3025730045 cites W3035008742 @default.
- W3025730045 cites W3098094730 @default.
- W3025730045 cites W3098284749 @default.
- W3025730045 cites W3098294620 @default.
- W3025730045 cites W3098724574 @default.
- W3025730045 cites W3100465285 @default.
- W3025730045 cites W3100796605 @default.
- W3025730045 cites W3100989453 @default.
- W3025730045 cites W3101187304 @default.
- W3025730045 cites W3101248382 @default.
- W3025730045 cites W3101802914 @default.
- W3025730045 cites W3103159079 @default.
- W3025730045 cites W3103235332 @default.
- W3025730045 cites W3103430166 @default.
- W3025730045 cites W3104062568 @default.
- W3025730045 cites W3104157591 @default.
- W3025730045 cites W3104633071 @default.
- W3025730045 cites W3104932469 @default.
- W3025730045 cites W3105535284 @default.
- W3025730045 cites W4288360372 @default.
- W3025730045 cites W4288511386 @default.
- W3025730045 cites W4289710316 @default.
- W3025730045 doi "https://doi.org/10.3847/1538-3881/ac9b3f" @default.
- W3025730045 hasPublicationYear "2022" @default.
- W3025730045 type Work @default.
- W3025730045 sameAs 3025730045 @default.
- W3025730045 citedByCount "5" @default.
- W3025730045 countsByYear W30257300452021 @default.
- W3025730045 countsByYear W30257300452023 @default.
- W3025730045 crossrefType "journal-article" @default.
- W3025730045 hasAuthorship W3025730045A5012189438 @default.
- W3025730045 hasAuthorship W3025730045A5053766501 @default.
- W3025730045 hasAuthorship W3025730045A5068837797 @default.
- W3025730045 hasBestOaLocation W30257300451 @default.
- W3025730045 hasConcept C101738243 @default.
- W3025730045 hasConcept C104114177 @default.
- W3025730045 hasConcept C105795698 @default.
- W3025730045 hasConcept C108583219 @default.
- W3025730045 hasConcept C11413529 @default.
- W3025730045 hasConcept C119857082 @default.
- W3025730045 hasConcept C121332964 @default.
- W3025730045 hasConcept C132459708 @default.
- W3025730045 hasConcept C137800194 @default.
- W3025730045 hasConcept C153180895 @default.
- W3025730045 hasConcept C154945302 @default.
- W3025730045 hasConcept C167966045 @default.
- W3025730045 hasConcept C32848918 @default.
- W3025730045 hasConcept C33923547 @default.
- W3025730045 hasConcept C39890363 @default.
- W3025730045 hasConcept C41008148 @default.
- W3025730045 hasConcept C51167844 @default.
- W3025730045 hasConcept C62520636 @default.
- W3025730045 hasConcept C81363708 @default.
- W3025730045 hasConceptScore W3025730045C101738243 @default.
- W3025730045 hasConceptScore W3025730045C104114177 @default.
- W3025730045 hasConceptScore W3025730045C105795698 @default.
- W3025730045 hasConceptScore W3025730045C108583219 @default.
- W3025730045 hasConceptScore W3025730045C11413529 @default.
- W3025730045 hasConceptScore W3025730045C119857082 @default.
- W3025730045 hasConceptScore W3025730045C121332964 @default.