Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025737531> ?p ?o ?g. }
- W3025737531 endingPage "104994" @default.
- W3025737531 startingPage "104994" @default.
- W3025737531 abstract "• We solve the Commodity-Split Multi-Compartment Capacitated Arc Routing Problem. • We develop a three-phase data-driven matheuristic that decomposes the problem. • The algorithm is applied to real data from six rural and urban Danish counties. • It adapts well to several graph types, degrees of sorting and demand distributions. The purpose of this paper is to develop a data-driven matheuristic for the Commodity-Split Multi-Compartment Capacitated Arc Routing Problem (CSMC-CARP). This problem arises in curbside waste collection, where there are different recyclable waste types called fractions. The CSMC-CARP is defined on an undirected graph with a limited heterogeneous fleet of multi-compartment vehicle types based at a depot, where each compartment’s capacity can vary depending on the waste fraction assigned to it and on the compression factor of that fraction in that vehicle type. The aim is to determine a set of least-cost routes starting and ending at the depot, such that the demand of each edge for each waste fraction is collected exactly once by one vehicle, without violating the capacity of any compartment. The CSMC-CARP consists of three decision levels: selecting the number of vehicles of each type, assigning waste fractions to the compartments of each selected vehicle, and routing the vehicles. Our three-phase algorithm decomposes the problem into incomplete solution representations and heuristically solves one or more decision levels at a time. The first phase selects a subset of attractive compartment assignments from all assignments of all vehicle types. The second phase solves the CSMC-CARP with an unlimited fleet of the selected assignments. This is done by our C-split tour splitting algorithm, which can simultaneously split a giant tour of required edges into feasible routes while making decisions on the fractions that are collected by each route. The third phase selects the set of best routes servicing all fractions of all required edges without exceeding the number of vehicles available of each type. The algorithm is applied to real-life instances arising from recyclable waste collection operations in Denmark, with graph sizes up to 6,149 nodes and 3,797 required edges, the waste sorted in three to six fractions, and four to six vehicle types with one to four compartments. Computational results show that the generated solutions favor combining different fractions together in vehicles with higher numbers of compartments, and that the algorithm adapts well to the characteristics of the data, in terms of the graph, vehicle types, degree of sorting, and to skewness in demand among waste fractions." @default.
- W3025737531 created "2020-05-21" @default.
- W3025737531 creator A5026697570 @default.
- W3025737531 creator A5076313841 @default.
- W3025737531 date "2020-10-01" @default.
- W3025737531 modified "2023-10-12" @default.
- W3025737531 title "The commodity-split multi-compartment capacitated arc routing problem" @default.
- W3025737531 cites W1694045780 @default.
- W3025737531 cites W1756646734 @default.
- W3025737531 cites W1963643500 @default.
- W3025737531 cites W1967830119 @default.
- W3025737531 cites W1994236851 @default.
- W3025737531 cites W2003160050 @default.
- W3025737531 cites W2004864856 @default.
- W3025737531 cites W2008616734 @default.
- W3025737531 cites W2018236017 @default.
- W3025737531 cites W2035500939 @default.
- W3025737531 cites W2039011874 @default.
- W3025737531 cites W2041183433 @default.
- W3025737531 cites W2062403584 @default.
- W3025737531 cites W2078219425 @default.
- W3025737531 cites W2081815260 @default.
- W3025737531 cites W2087465622 @default.
- W3025737531 cites W2088003110 @default.
- W3025737531 cites W2117319367 @default.
- W3025737531 cites W2117466569 @default.
- W3025737531 cites W2170332620 @default.
- W3025737531 cites W2203622089 @default.
- W3025737531 cites W226211203 @default.
- W3025737531 cites W2262246802 @default.
- W3025737531 cites W2274594911 @default.
- W3025737531 cites W2433788211 @default.
- W3025737531 cites W2616101379 @default.
- W3025737531 cites W2903604785 @default.
- W3025737531 cites W2914147682 @default.
- W3025737531 cites W3121988186 @default.
- W3025737531 doi "https://doi.org/10.1016/j.cor.2020.104994" @default.
- W3025737531 hasPublicationYear "2020" @default.
- W3025737531 type Work @default.
- W3025737531 sameAs 3025737531 @default.
- W3025737531 citedByCount "15" @default.
- W3025737531 countsByYear W30257375312020 @default.
- W3025737531 countsByYear W30257375312021 @default.
- W3025737531 countsByYear W30257375312022 @default.
- W3025737531 countsByYear W30257375312023 @default.
- W3025737531 crossrefType "journal-article" @default.
- W3025737531 hasAuthorship W3025737531A5026697570 @default.
- W3025737531 hasAuthorship W3025737531A5076313841 @default.
- W3025737531 hasBestOaLocation W30257375311 @default.
- W3025737531 hasConcept C111368507 @default.
- W3025737531 hasConcept C123784306 @default.
- W3025737531 hasConcept C126255220 @default.
- W3025737531 hasConcept C127313418 @default.
- W3025737531 hasConcept C127413603 @default.
- W3025737531 hasConcept C132525143 @default.
- W3025737531 hasConcept C154945302 @default.
- W3025737531 hasConcept C162307627 @default.
- W3025737531 hasConcept C203635412 @default.
- W3025737531 hasConcept C2778536092 @default.
- W3025737531 hasConcept C2781018962 @default.
- W3025737531 hasConcept C31258907 @default.
- W3025737531 hasConcept C33923547 @default.
- W3025737531 hasConcept C41008148 @default.
- W3025737531 hasConcept C74172769 @default.
- W3025737531 hasConcept C78519656 @default.
- W3025737531 hasConcept C80444323 @default.
- W3025737531 hasConceptScore W3025737531C111368507 @default.
- W3025737531 hasConceptScore W3025737531C123784306 @default.
- W3025737531 hasConceptScore W3025737531C126255220 @default.
- W3025737531 hasConceptScore W3025737531C127313418 @default.
- W3025737531 hasConceptScore W3025737531C127413603 @default.
- W3025737531 hasConceptScore W3025737531C132525143 @default.
- W3025737531 hasConceptScore W3025737531C154945302 @default.
- W3025737531 hasConceptScore W3025737531C162307627 @default.
- W3025737531 hasConceptScore W3025737531C203635412 @default.
- W3025737531 hasConceptScore W3025737531C2778536092 @default.
- W3025737531 hasConceptScore W3025737531C2781018962 @default.
- W3025737531 hasConceptScore W3025737531C31258907 @default.
- W3025737531 hasConceptScore W3025737531C33923547 @default.
- W3025737531 hasConceptScore W3025737531C41008148 @default.
- W3025737531 hasConceptScore W3025737531C74172769 @default.
- W3025737531 hasConceptScore W3025737531C78519656 @default.
- W3025737531 hasConceptScore W3025737531C80444323 @default.
- W3025737531 hasFunder F4320310487 @default.
- W3025737531 hasFunder F4320334593 @default.
- W3025737531 hasLocation W30257375311 @default.
- W3025737531 hasOpenAccess W3025737531 @default.
- W3025737531 hasPrimaryLocation W30257375311 @default.
- W3025737531 hasRelatedWork W1514176033 @default.
- W3025737531 hasRelatedWork W1978338991 @default.
- W3025737531 hasRelatedWork W2041183433 @default.
- W3025737531 hasRelatedWork W2060733351 @default.
- W3025737531 hasRelatedWork W2385363999 @default.
- W3025737531 hasRelatedWork W2883598186 @default.
- W3025737531 hasRelatedWork W3008247483 @default.
- W3025737531 hasRelatedWork W4297825038 @default.
- W3025737531 hasRelatedWork W4309342506 @default.
- W3025737531 hasRelatedWork W2736977227 @default.