Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025743531> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3025743531 abstract "Digital twin technology has a huge potential for widespread applications in different industrial sectors such as infrastructure, aerospace, and automotive. However, practical adoptions of this technology have been slower, mainly due to a lack of application-specific details. Here we focus on a digital twin framework for linear single-degree-of-freedom structural dynamic systems evolving in two different operational time scales in addition to its intrinsic dynamic time-scale. Our approach strategically separates into two components -- (a) a physics-based nominal model for data processing and response predictions, and (b) a data-driven machine learning model for the time-evolution of the system parameters. The physics-based nominal model is system-specific and selected based on the problem under consideration. On the other hand, the data-driven machine learning model is generic. For tracking the multi-scale evolution of the system parameters, we propose to exploit a mixture of experts as the data-driven model. Within the mixture of experts model, Gaussian Process (GP) is used as the expert model. The primary idea is to let each expert track the evolution of the system parameters at a single time-scale. For learning the hyperparameters of the `mixture of experts using GP', an efficient framework the exploits expectation-maximization and sequential Monte Carlo sampler is used. Performance of the digital twin is illustrated on a multi-timescale dynamical system with stiffness and/or mass variations. The digital twin is found to be robust and yields reasonably accurate results. One exciting feature of the proposed digital twin is its capability to provide reasonable predictions at future time-steps. Aspects related to the data quality and data quantity are also investigated." @default.
- W3025743531 created "2020-05-21" @default.
- W3025743531 creator A5007121098 @default.
- W3025743531 creator A5030664714 @default.
- W3025743531 date "2020-05-12" @default.
- W3025743531 modified "2023-10-14" @default.
- W3025743531 title "Machine learning based digital twin for dynamical systems with multiple time-scales" @default.
- W3025743531 cites W1503398984 @default.
- W3025743531 cites W1964773554 @default.
- W3025743531 cites W1985926778 @default.
- W3025743531 cites W2053897782 @default.
- W3025743531 cites W2060682310 @default.
- W3025743531 cites W2085738358 @default.
- W3025743531 cites W2108366027 @default.
- W3025743531 cites W2126736494 @default.
- W3025743531 cites W2144446997 @default.
- W3025743531 cites W2147357149 @default.
- W3025743531 cites W2340034529 @default.
- W3025743531 cites W2563851806 @default.
- W3025743531 cites W2794202219 @default.
- W3025743531 cites W2794230447 @default.
- W3025743531 cites W2801459707 @default.
- W3025743531 cites W2904138018 @default.
- W3025743531 cites W2910597635 @default.
- W3025743531 cites W2930284441 @default.
- W3025743531 cites W2953651404 @default.
- W3025743531 cites W2963753542 @default.
- W3025743531 cites W2966906878 @default.
- W3025743531 cites W2973231164 @default.
- W3025743531 cites W2975876537 @default.
- W3025743531 cites W2976672243 @default.
- W3025743531 cites W2997121960 @default.
- W3025743531 cites W2997814214 @default.
- W3025743531 cites W3003667836 @default.
- W3025743531 cites W3003895975 @default.
- W3025743531 cites W3022399480 @default.
- W3025743531 cites W3022503559 @default.
- W3025743531 cites W3022972893 @default.
- W3025743531 cites W3089933773 @default.
- W3025743531 hasPublicationYear "2020" @default.
- W3025743531 type Work @default.
- W3025743531 sameAs 3025743531 @default.
- W3025743531 citedByCount "0" @default.
- W3025743531 crossrefType "posted-content" @default.
- W3025743531 hasAuthorship W3025743531A5007121098 @default.
- W3025743531 hasAuthorship W3025743531A5030664714 @default.
- W3025743531 hasConcept C119857082 @default.
- W3025743531 hasConcept C121332964 @default.
- W3025743531 hasConcept C154945302 @default.
- W3025743531 hasConcept C163716315 @default.
- W3025743531 hasConcept C165696696 @default.
- W3025743531 hasConcept C2778755073 @default.
- W3025743531 hasConcept C38652104 @default.
- W3025743531 hasConcept C41008148 @default.
- W3025743531 hasConcept C61326573 @default.
- W3025743531 hasConcept C62520636 @default.
- W3025743531 hasConcept C8642999 @default.
- W3025743531 hasConceptScore W3025743531C119857082 @default.
- W3025743531 hasConceptScore W3025743531C121332964 @default.
- W3025743531 hasConceptScore W3025743531C154945302 @default.
- W3025743531 hasConceptScore W3025743531C163716315 @default.
- W3025743531 hasConceptScore W3025743531C165696696 @default.
- W3025743531 hasConceptScore W3025743531C2778755073 @default.
- W3025743531 hasConceptScore W3025743531C38652104 @default.
- W3025743531 hasConceptScore W3025743531C41008148 @default.
- W3025743531 hasConceptScore W3025743531C61326573 @default.
- W3025743531 hasConceptScore W3025743531C62520636 @default.
- W3025743531 hasConceptScore W3025743531C8642999 @default.
- W3025743531 hasLocation W30257435311 @default.
- W3025743531 hasOpenAccess W3025743531 @default.
- W3025743531 hasPrimaryLocation W30257435311 @default.
- W3025743531 hasRelatedWork W1565185041 @default.
- W3025743531 hasRelatedWork W2003117510 @default.
- W3025743531 hasRelatedWork W2163047117 @default.
- W3025743531 hasRelatedWork W2809584400 @default.
- W3025743531 hasRelatedWork W2883939573 @default.
- W3025743531 hasRelatedWork W2900567995 @default.
- W3025743531 hasRelatedWork W2949390046 @default.
- W3025743531 hasRelatedWork W2976021752 @default.
- W3025743531 hasRelatedWork W2980258160 @default.
- W3025743531 hasRelatedWork W2985809950 @default.
- W3025743531 hasRelatedWork W3023002804 @default.
- W3025743531 hasRelatedWork W3094607639 @default.
- W3025743531 hasRelatedWork W3100161757 @default.
- W3025743531 hasRelatedWork W3101235239 @default.
- W3025743531 hasRelatedWork W3158940529 @default.
- W3025743531 hasRelatedWork W3185598236 @default.
- W3025743531 hasRelatedWork W3187945464 @default.
- W3025743531 hasRelatedWork W3199546280 @default.
- W3025743531 hasRelatedWork W3206216308 @default.
- W3025743531 hasRelatedWork W3210368639 @default.
- W3025743531 isParatext "false" @default.
- W3025743531 isRetracted "false" @default.
- W3025743531 magId "3025743531" @default.
- W3025743531 workType "article" @default.