Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025781923> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3025781923 abstract "The U.S. water distribution system contains thousands of miles of pipes constructed from different materials, and of various sizes, and age. These pipes suffer from physical, environmental, structural, and operational stresses, causing deterioration which eventually leads to their failure. Pipe deterioration results in increased break rates, reduced hydraulic capacity, and detrimental impacts on water quality. Therefore, it is crucial to use accurate models to forecast deterioration rates along with estimating the remaining useful life of the pipes to implement essential interference plans to prevent catastrophic failures. This paper discusses a computational model that forecasts the RUL of water pipes by applying artificial neural networks (ANNs) as well as the adaptive neural fuzzy inference system (ANFIS). These models are trained and tested acquired field data to identify the significant parameters that impact the prediction of RUL. It is concluded that, on average, with approximately 10% of wall thickness loss in existing cast iron, ductile iron, asbestos-cement, and steel water pipes, the reduction of the remaining useful life is approximately 50%." @default.
- W3025781923 created "2020-05-21" @default.
- W3025781923 creator A5037073452 @default.
- W3025781923 creator A5062469937 @default.
- W3025781923 creator A5066558411 @default.
- W3025781923 date "2020-05-14" @default.
- W3025781923 modified "2023-09-28" @default.
- W3025781923 title "Artificial Neural Networks and Adaptive Neuro-Fuzzy Models to Predict Remaining Useful Life of Water Pipelines" @default.
- W3025781923 cites W1034842738 @default.
- W3025781923 cites W1997738271 @default.
- W3025781923 cites W1998890126 @default.
- W3025781923 cites W2042945153 @default.
- W3025781923 cites W2050237244 @default.
- W3025781923 cites W2052162057 @default.
- W3025781923 cites W2067796453 @default.
- W3025781923 cites W2094336544 @default.
- W3025781923 cites W2130414680 @default.
- W3025781923 cites W2150886131 @default.
- W3025781923 cites W2290067102 @default.
- W3025781923 cites W2328268473 @default.
- W3025781923 cites W2468494510 @default.
- W3025781923 cites W2502012342 @default.
- W3025781923 cites W2790863358 @default.
- W3025781923 cites W769703914 @default.
- W3025781923 doi "https://doi.org/10.1061/9780784482988.019" @default.
- W3025781923 hasPublicationYear "2020" @default.
- W3025781923 type Work @default.
- W3025781923 sameAs 3025781923 @default.
- W3025781923 citedByCount "8" @default.
- W3025781923 countsByYear W30257819232021 @default.
- W3025781923 countsByYear W30257819232022 @default.
- W3025781923 countsByYear W30257819232023 @default.
- W3025781923 crossrefType "proceedings-article" @default.
- W3025781923 hasAuthorship W3025781923A5037073452 @default.
- W3025781923 hasAuthorship W3025781923A5062469937 @default.
- W3025781923 hasAuthorship W3025781923A5066558411 @default.
- W3025781923 hasConcept C119857082 @default.
- W3025781923 hasConcept C127413603 @default.
- W3025781923 hasConcept C154945302 @default.
- W3025781923 hasConcept C175309249 @default.
- W3025781923 hasConcept C186108316 @default.
- W3025781923 hasConcept C195975749 @default.
- W3025781923 hasConcept C200601418 @default.
- W3025781923 hasConcept C29470771 @default.
- W3025781923 hasConcept C2988105877 @default.
- W3025781923 hasConcept C39432304 @default.
- W3025781923 hasConcept C41008148 @default.
- W3025781923 hasConcept C50644808 @default.
- W3025781923 hasConcept C58166 @default.
- W3025781923 hasConcept C87717796 @default.
- W3025781923 hasConceptScore W3025781923C119857082 @default.
- W3025781923 hasConceptScore W3025781923C127413603 @default.
- W3025781923 hasConceptScore W3025781923C154945302 @default.
- W3025781923 hasConceptScore W3025781923C175309249 @default.
- W3025781923 hasConceptScore W3025781923C186108316 @default.
- W3025781923 hasConceptScore W3025781923C195975749 @default.
- W3025781923 hasConceptScore W3025781923C200601418 @default.
- W3025781923 hasConceptScore W3025781923C29470771 @default.
- W3025781923 hasConceptScore W3025781923C2988105877 @default.
- W3025781923 hasConceptScore W3025781923C39432304 @default.
- W3025781923 hasConceptScore W3025781923C41008148 @default.
- W3025781923 hasConceptScore W3025781923C50644808 @default.
- W3025781923 hasConceptScore W3025781923C58166 @default.
- W3025781923 hasConceptScore W3025781923C87717796 @default.
- W3025781923 hasLocation W30257819231 @default.
- W3025781923 hasOpenAccess W3025781923 @default.
- W3025781923 hasPrimaryLocation W30257819231 @default.
- W3025781923 hasRelatedWork W123993404 @default.
- W3025781923 hasRelatedWork W2032623774 @default.
- W3025781923 hasRelatedWork W2275399693 @default.
- W3025781923 hasRelatedWork W2300290509 @default.
- W3025781923 hasRelatedWork W2499167147 @default.
- W3025781923 hasRelatedWork W2785395359 @default.
- W3025781923 hasRelatedWork W2912422843 @default.
- W3025781923 hasRelatedWork W2914044032 @default.
- W3025781923 hasRelatedWork W3024232274 @default.
- W3025781923 hasRelatedWork W4310906510 @default.
- W3025781923 isParatext "false" @default.
- W3025781923 isRetracted "false" @default.
- W3025781923 magId "3025781923" @default.
- W3025781923 workType "article" @default.