Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025786591> ?p ?o ?g. }
- W3025786591 endingPage "2861" @default.
- W3025786591 startingPage "2837" @default.
- W3025786591 abstract "Abstract This paper describes the development of convolutional neural networks (CNN), a type of deep-learning method, to predict next-hour tornado occurrence. Predictors are a storm-centered radar image and a proximity sounding from the Rapid Refresh model. Radar images come from the Multiyear Reanalysis of Remotely Sensed Storms (MYRORSS) and Gridded NEXRAD WSR-88D Radar dataset (GridRad), both of which are multiradar composites. We train separate CNNs on MYRORSS and GridRad data, present an experiment to optimize the CNN settings, and evaluate the chosen CNNs on independent testing data. Both models achieve an area under the receiver-operating-characteristic curve (AUC) well above 0.9, which is considered to be excellent performance. The GridRad model achieves a critical success index (CSI) of 0.31, and the MYRORSS model achieves a CSI of 0.17. The difference is due primarily to event frequency (percentage of storms that are tornadic in the next hour), which is 3.52% for GridRad but only 0.24% for MYRORSS. The best CNN predictions (true positives and negatives) occur for strongly rotating tornadic supercells and weak nontornadic cells in mesoscale convective systems, respectively. The worst predictions (false positives and negatives) occur for strongly rotating nontornadic supercells and tornadic cells in quasi-linear convective systems, respectively. The performance of our CNNs is comparable to an operational machine-learning system for severe weather prediction, which suggests that they would be useful for real-time forecasting." @default.
- W3025786591 created "2020-05-21" @default.
- W3025786591 creator A5013035594 @default.
- W3025786591 creator A5013616568 @default.
- W3025786591 creator A5017837598 @default.
- W3025786591 creator A5065522279 @default.
- W3025786591 creator A5070181594 @default.
- W3025786591 date "2020-06-24" @default.
- W3025786591 modified "2023-10-10" @default.
- W3025786591 title "Deep Learning on Three-Dimensional Multiscale Data for Next-Hour Tornado Prediction" @default.
- W3025786591 cites W1555849313 @default.
- W3025786591 cites W1865701110 @default.
- W3025786591 cites W1968114652 @default.
- W3025786591 cites W1974680387 @default.
- W3025786591 cites W1977552619 @default.
- W3025786591 cites W1980479965 @default.
- W3025786591 cites W1981124838 @default.
- W3025786591 cites W1985998423 @default.
- W3025786591 cites W2011301426 @default.
- W3025786591 cites W2012190102 @default.
- W3025786591 cites W2022545409 @default.
- W3025786591 cites W2026112921 @default.
- W3025786591 cites W2030386161 @default.
- W3025786591 cites W2031580446 @default.
- W3025786591 cites W2044738244 @default.
- W3025786591 cites W2069061556 @default.
- W3025786591 cites W2078451609 @default.
- W3025786591 cites W2079567099 @default.
- W3025786591 cites W2094268059 @default.
- W3025786591 cites W2098702616 @default.
- W3025786591 cites W2104484944 @default.
- W3025786591 cites W2118089487 @default.
- W3025786591 cites W2118953259 @default.
- W3025786591 cites W2123684716 @default.
- W3025786591 cites W2123987184 @default.
- W3025786591 cites W2137133706 @default.
- W3025786591 cites W2137586905 @default.
- W3025786591 cites W2152202234 @default.
- W3025786591 cites W2161364076 @default.
- W3025786591 cites W2174913527 @default.
- W3025786591 cites W2176817967 @default.
- W3025786591 cites W2177509644 @default.
- W3025786591 cites W2177869279 @default.
- W3025786591 cites W2177934295 @default.
- W3025786591 cites W2189951138 @default.
- W3025786591 cites W2229759802 @default.
- W3025786591 cites W2257979135 @default.
- W3025786591 cites W2259421489 @default.
- W3025786591 cites W2289436918 @default.
- W3025786591 cites W2319040573 @default.
- W3025786591 cites W2508885863 @default.
- W3025786591 cites W2519699932 @default.
- W3025786591 cites W2533306505 @default.
- W3025786591 cites W2560290060 @default.
- W3025786591 cites W2618530766 @default.
- W3025786591 cites W2668302049 @default.
- W3025786591 cites W2785720868 @default.
- W3025786591 cites W2793367185 @default.
- W3025786591 cites W2841011465 @default.
- W3025786591 cites W2895048747 @default.
- W3025786591 cites W2906035385 @default.
- W3025786591 cites W2908155528 @default.
- W3025786591 cites W2911702971 @default.
- W3025786591 cites W2912445160 @default.
- W3025786591 cites W2913323966 @default.
- W3025786591 cites W2932915765 @default.
- W3025786591 cites W2947707259 @default.
- W3025786591 cites W2950210192 @default.
- W3025786591 cites W2969309273 @default.
- W3025786591 cites W4234698323 @default.
- W3025786591 doi "https://doi.org/10.1175/mwr-d-19-0372.1" @default.
- W3025786591 hasPublicationYear "2020" @default.
- W3025786591 type Work @default.
- W3025786591 sameAs 3025786591 @default.
- W3025786591 citedByCount "34" @default.
- W3025786591 countsByYear W30257865912020 @default.
- W3025786591 countsByYear W30257865912021 @default.
- W3025786591 countsByYear W30257865912022 @default.
- W3025786591 countsByYear W30257865912023 @default.
- W3025786591 crossrefType "journal-article" @default.
- W3025786591 hasAuthorship W3025786591A5013035594 @default.
- W3025786591 hasAuthorship W3025786591A5013616568 @default.
- W3025786591 hasAuthorship W3025786591A5017837598 @default.
- W3025786591 hasAuthorship W3025786591A5065522279 @default.
- W3025786591 hasAuthorship W3025786591A5070181594 @default.
- W3025786591 hasBestOaLocation W30257865911 @default.
- W3025786591 hasConcept C105306849 @default.
- W3025786591 hasConcept C108583219 @default.
- W3025786591 hasConcept C111368507 @default.
- W3025786591 hasConcept C121332964 @default.
- W3025786591 hasConcept C127313418 @default.
- W3025786591 hasConcept C153294291 @default.
- W3025786591 hasConcept C154945302 @default.
- W3025786591 hasConcept C187460315 @default.
- W3025786591 hasConcept C190930322 @default.
- W3025786591 hasConcept C192932206 @default.
- W3025786591 hasConcept C2778559676 @default.
- W3025786591 hasConcept C2781013037 @default.