Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025800360> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3025800360 endingPage "36" @default.
- W3025800360 startingPage "18" @default.
- W3025800360 abstract "This paper aims to improve the quality of the patient's life and provide them with the lifestyle they need. And we have the intention to obtain this by creating a mobile application that analyzes the patient's data such as diabetes, blood pressure, and kidney. Then, implement the system to diagnose patients of chronic diseases using machine learning techniques such as classification. It's hard for the patients of chronic diseases to record their measurements on a paper every time they measure either the blood pressure or sugar level or any other disease that needs periodic measurements. The paper might be lost, and this can lead the doctor not fully to understand the case. So, the application is going to record measurements in the database. Also, it's difficult for patients to decide what to eat or how many times they should exercise according to their situation. Our idea is to recommend a lifestyle for the patient and make the doctor participate in it by writing notes. In this paper, machine learning classifiers were used to predict whether the person is prone to some chronic diseases. Blood pressure, diabetes and kidney are considered in this work. Orange3 from Anaconda-Navigator is the data mining tool used to test some machine learning algorithms. Blood pressure is the amount of force that blood exerts on the walls of the arteries as it flows through them. When this pressure reaches high levels, it can lead to serious health problems. For hypertension, Tree algorithm has shown 100% accuracy, which was the best one. Chronic Kidney Disease (CKD) is a significant public health concern with rising prevalence. With a set of considered attributes such as specific gravity, albumin, serum creatinine, hemoglobin, packed cell volume and hypertension used to predict if the person has Kidney disease or not. For kidney, Random Forest algorithm has shown 100% accuracy, which was the best one among other algorithms tested. Diabetes is a chronic disease when it cannot the pancreas to produce insulin, or when the body cannot use the insulin the pancreas produced. We considered attributes such as pregnancies, glucose, blood pressure, skin thickness, insulin, diabetes pedigree function, age and BMI of a person to diagnose whether a patient has diabetes based on specific diagnostic measurements or not. For diabetes, neural networks have shown the best accuracy. It was 76.3%." @default.
- W3025800360 created "2020-05-21" @default.
- W3025800360 creator A5013104654 @default.
- W3025800360 creator A5014358734 @default.
- W3025800360 creator A5046398687 @default.
- W3025800360 creator A5074730466 @default.
- W3025800360 creator A5080820177 @default.
- W3025800360 creator A5085000687 @default.
- W3025800360 date "2020-04-17" @default.
- W3025800360 modified "2023-09-26" @default.
- W3025800360 title "Chronic Diseases System Based on Machine Learning Techniques" @default.
- W3025800360 cites W2005311689 @default.
- W3025800360 cites W2083817839 @default.
- W3025800360 cites W2085848038 @default.
- W3025800360 cites W2089049859 @default.
- W3025800360 cites W2106610064 @default.
- W3025800360 cites W2124970417 @default.
- W3025800360 cites W2139897147 @default.
- W3025800360 cites W2141631554 @default.
- W3025800360 cites W2169439425 @default.
- W3025800360 cites W2169773724 @default.
- W3025800360 cites W2600489752 @default.
- W3025800360 cites W2802926671 @default.
- W3025800360 cites W2823216385 @default.
- W3025800360 cites W2909666034 @default.
- W3025800360 cites W2971853468 @default.
- W3025800360 cites W3099876628 @default.
- W3025800360 cites W4231453475 @default.
- W3025800360 cites W4238924748 @default.
- W3025800360 cites W4249702230 @default.
- W3025800360 doi "https://doi.org/10.18517/ijods.1.1.18-36.2020" @default.
- W3025800360 hasPublicationYear "2020" @default.
- W3025800360 type Work @default.
- W3025800360 sameAs 3025800360 @default.
- W3025800360 citedByCount "1" @default.
- W3025800360 countsByYear W30258003602022 @default.
- W3025800360 crossrefType "journal-article" @default.
- W3025800360 hasAuthorship W3025800360A5013104654 @default.
- W3025800360 hasAuthorship W3025800360A5014358734 @default.
- W3025800360 hasAuthorship W3025800360A5046398687 @default.
- W3025800360 hasAuthorship W3025800360A5074730466 @default.
- W3025800360 hasAuthorship W3025800360A5080820177 @default.
- W3025800360 hasAuthorship W3025800360A5085000687 @default.
- W3025800360 hasBestOaLocation W30258003601 @default.
- W3025800360 hasConcept C119857082 @default.
- W3025800360 hasConcept C126322002 @default.
- W3025800360 hasConcept C134018914 @default.
- W3025800360 hasConcept C154945302 @default.
- W3025800360 hasConcept C177713679 @default.
- W3025800360 hasConcept C2778653478 @default.
- W3025800360 hasConcept C2780485761 @default.
- W3025800360 hasConcept C2987552334 @default.
- W3025800360 hasConcept C41008148 @default.
- W3025800360 hasConcept C555293320 @default.
- W3025800360 hasConcept C71924100 @default.
- W3025800360 hasConcept C84393581 @default.
- W3025800360 hasConcept C84525736 @default.
- W3025800360 hasConceptScore W3025800360C119857082 @default.
- W3025800360 hasConceptScore W3025800360C126322002 @default.
- W3025800360 hasConceptScore W3025800360C134018914 @default.
- W3025800360 hasConceptScore W3025800360C154945302 @default.
- W3025800360 hasConceptScore W3025800360C177713679 @default.
- W3025800360 hasConceptScore W3025800360C2778653478 @default.
- W3025800360 hasConceptScore W3025800360C2780485761 @default.
- W3025800360 hasConceptScore W3025800360C2987552334 @default.
- W3025800360 hasConceptScore W3025800360C41008148 @default.
- W3025800360 hasConceptScore W3025800360C555293320 @default.
- W3025800360 hasConceptScore W3025800360C71924100 @default.
- W3025800360 hasConceptScore W3025800360C84393581 @default.
- W3025800360 hasConceptScore W3025800360C84525736 @default.
- W3025800360 hasIssue "1" @default.
- W3025800360 hasLocation W30258003601 @default.
- W3025800360 hasOpenAccess W3025800360 @default.
- W3025800360 hasPrimaryLocation W30258003601 @default.
- W3025800360 hasRelatedWork W1470425429 @default.
- W3025800360 hasRelatedWork W2381259052 @default.
- W3025800360 hasRelatedWork W3200719183 @default.
- W3025800360 hasRelatedWork W3204641204 @default.
- W3025800360 hasRelatedWork W3210877509 @default.
- W3025800360 hasRelatedWork W4205958290 @default.
- W3025800360 hasRelatedWork W4249746146 @default.
- W3025800360 hasRelatedWork W4283016678 @default.
- W3025800360 hasRelatedWork W4318350883 @default.
- W3025800360 hasRelatedWork W4328134586 @default.
- W3025800360 hasVolume "1" @default.
- W3025800360 isParatext "false" @default.
- W3025800360 isRetracted "false" @default.
- W3025800360 magId "3025800360" @default.
- W3025800360 workType "article" @default.