Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025835124> ?p ?o ?g. }
- W3025835124 endingPage "884" @default.
- W3025835124 startingPage "879" @default.
- W3025835124 abstract "Radiotherapy is one of the main treatments for tumor with increasingly high request for technique precision and the equipment stability. Machine learning may bring radiotherapy simplicity, individualization and precision, and may improve the automatic level of planning and quality assurance. Based on the process of radiotherapy, this paper reviews the applications and researches on machine learning, with an emphasis on deep learning, and proposes the prospects in the following aspects: segmentation of normal tissue and tumor, planning, treatment delivery, quality assurance and prognosis prediction.放射治疗(简称:放疗)作为肿瘤的主要治疗方式之一,在整个流程中对于治疗的技术精度和设备稳定性具有越来越高的要求。机器学习方法能够使放疗决策更加简化、个体化和精确化,提高了放疗计划设计和质量控制环节的自动化程度,推动了个体化的精准治疗。本文以放疗流程为线索,对机器学习方法尤其是深度学习法,在正常组织和肿瘤靶区的勾画、放疗计划设计、放疗实施、质量控制和放疗疗效预测等几个方面的应用、研究情况予以综述,并对发展前景做出展望。." @default.
- W3025835124 created "2020-05-21" @default.
- W3025835124 creator A5031767581 @default.
- W3025835124 creator A5039993720 @default.
- W3025835124 creator A5049631568 @default.
- W3025835124 creator A5056662571 @default.
- W3025835124 creator A5064723217 @default.
- W3025835124 date "2019-10-25" @default.
- W3025835124 modified "2023-09-26" @default.
- W3025835124 title "[A review of machine learning in tumor radiotherapy]." @default.
- W3025835124 cites W1985941733 @default.
- W3025835124 cites W2087435876 @default.
- W3025835124 cites W2088072033 @default.
- W3025835124 cites W2196898084 @default.
- W3025835124 cites W2255191972 @default.
- W3025835124 cites W2295556464 @default.
- W3025835124 cites W2301358467 @default.
- W3025835124 cites W2310992461 @default.
- W3025835124 cites W2323200062 @default.
- W3025835124 cites W2337675972 @default.
- W3025835124 cites W2350011080 @default.
- W3025835124 cites W2357815549 @default.
- W3025835124 cites W2523522651 @default.
- W3025835124 cites W2550380503 @default.
- W3025835124 cites W2555096873 @default.
- W3025835124 cites W2560725027 @default.
- W3025835124 cites W2592929672 @default.
- W3025835124 cites W2756456050 @default.
- W3025835124 cites W2757454662 @default.
- W3025835124 cites W2769728000 @default.
- W3025835124 cites W2790671491 @default.
- W3025835124 cites W2794962342 @default.
- W3025835124 cites W2795777898 @default.
- W3025835124 cites W2803677800 @default.
- W3025835124 cites W2861648048 @default.
- W3025835124 cites W3101123465 @default.
- W3025835124 cites W3102986501 @default.
- W3025835124 doi "https://doi.org/10.7507/1001-5515.201810051" @default.
- W3025835124 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31631639" @default.
- W3025835124 hasPublicationYear "2019" @default.
- W3025835124 type Work @default.
- W3025835124 sameAs 3025835124 @default.
- W3025835124 citedByCount "0" @default.
- W3025835124 crossrefType "journal-article" @default.
- W3025835124 hasAuthorship W3025835124A5031767581 @default.
- W3025835124 hasAuthorship W3025835124A5039993720 @default.
- W3025835124 hasAuthorship W3025835124A5049631568 @default.
- W3025835124 hasAuthorship W3025835124A5056662571 @default.
- W3025835124 hasAuthorship W3025835124A5064723217 @default.
- W3025835124 hasConcept C106436119 @default.
- W3025835124 hasConcept C111472728 @default.
- W3025835124 hasConcept C111919701 @default.
- W3025835124 hasConcept C119857082 @default.
- W3025835124 hasConcept C126838900 @default.
- W3025835124 hasConcept C127413603 @default.
- W3025835124 hasConcept C138885662 @default.
- W3025835124 hasConcept C154945302 @default.
- W3025835124 hasConcept C19527891 @default.
- W3025835124 hasConcept C201645570 @default.
- W3025835124 hasConcept C21547014 @default.
- W3025835124 hasConcept C2776372474 @default.
- W3025835124 hasConcept C2778618615 @default.
- W3025835124 hasConcept C2779530757 @default.
- W3025835124 hasConcept C41008148 @default.
- W3025835124 hasConcept C509974204 @default.
- W3025835124 hasConcept C71924100 @default.
- W3025835124 hasConcept C89600930 @default.
- W3025835124 hasConcept C98045186 @default.
- W3025835124 hasConceptScore W3025835124C106436119 @default.
- W3025835124 hasConceptScore W3025835124C111472728 @default.
- W3025835124 hasConceptScore W3025835124C111919701 @default.
- W3025835124 hasConceptScore W3025835124C119857082 @default.
- W3025835124 hasConceptScore W3025835124C126838900 @default.
- W3025835124 hasConceptScore W3025835124C127413603 @default.
- W3025835124 hasConceptScore W3025835124C138885662 @default.
- W3025835124 hasConceptScore W3025835124C154945302 @default.
- W3025835124 hasConceptScore W3025835124C19527891 @default.
- W3025835124 hasConceptScore W3025835124C201645570 @default.
- W3025835124 hasConceptScore W3025835124C21547014 @default.
- W3025835124 hasConceptScore W3025835124C2776372474 @default.
- W3025835124 hasConceptScore W3025835124C2778618615 @default.
- W3025835124 hasConceptScore W3025835124C2779530757 @default.
- W3025835124 hasConceptScore W3025835124C41008148 @default.
- W3025835124 hasConceptScore W3025835124C509974204 @default.
- W3025835124 hasConceptScore W3025835124C71924100 @default.
- W3025835124 hasConceptScore W3025835124C89600930 @default.
- W3025835124 hasConceptScore W3025835124C98045186 @default.
- W3025835124 hasIssue "5" @default.
- W3025835124 hasLocation W30258351241 @default.
- W3025835124 hasOpenAccess W3025835124 @default.
- W3025835124 hasPrimaryLocation W30258351241 @default.
- W3025835124 hasRelatedWork W2046411367 @default.
- W3025835124 hasRelatedWork W2223073576 @default.
- W3025835124 hasRelatedWork W2404283633 @default.
- W3025835124 hasRelatedWork W2411603702 @default.
- W3025835124 hasRelatedWork W2465517649 @default.
- W3025835124 hasRelatedWork W2465919842 @default.
- W3025835124 hasRelatedWork W2547450200 @default.