Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025842004> ?p ?o ?g. }
- W3025842004 endingPage "105623" @default.
- W3025842004 startingPage "105623" @default.
- W3025842004 abstract "Statistical habitat models, such as spatial generalized linear mixed models (GLMMs) and spatial generalized additive models (GAMs), provide valuable products to habitat assessments and ecosystem-based fisheries management (EBFM) efforts. In particular, derived spatial distribution maps and quantitative relationships of marine organisms to environmental variables (e.g., suitability indices) can be employed to develop or validate ecosystem simulation models. Recent studies fitted spatial GLMMs and spatial GAMs to encounter/non-encounter data collected by different regional monitoring programs that use random sampling designs, so as to enable the production of distribution maps and suitability indices in bulk. However, despite these large efforts, it was not possible to obtain distribution maps for a number of species and life stage combinations, including the juvenile stages of coastal fish species such as croaker (Micropogonias undulatus). In this study, we introduce a grid-summarization method that allows for the combined use of encounter/non-encounter data collected by multiple monitoring programs at random and fixed sampling stations. We demonstrate our grid-summarization method for contrasting species of the western U.S. Gulf of Mexico: red snapper (Lutjanus campechanus), for which data delivered by monitoring programs employing random sampling designs have a satisfactory spatial coverage and the use of monitoring data collected at fixed sampling stations is not necessary; and croaker and brown shrimp (Farfantepenaeus aztecus), for which the combined use of monitoring data collected at random and fixed sampling stations enables or improves the generation of distribution maps. We compare spatial GLMMs and spatial GAMs that rely on the grid-summarization method (“new models”) to spatial GLMMs and spatial GAMs that do not rely on the grid-summarization method (“status-quo models”). We found that the grid-summarization method that allows for the combined use of monitoring data collected at random and fixed sampling stations results in reasonable seasonal distribution maps and suitability indices for the species and life stage combinations (e.g., croaker early juveniles, small brown shrimps) that are undersampled by the monitoring programs that employ random sampling schemes. We also found that the grid-summarization method provides reasonable seasonal distribution maps and suitability relationships for species and life stage combinations (e.g., red snapper adults) for which the status-quo method already provided reasonable results and the combined use of monitoring data collected at random and fixed sampling stations is not necessary. For these species and life stage combinations for which the status-quo method worked well, the choice of the grid-summarization method over the status-quo method depends on whether the fisheries analysts wish to produce smoother distribution maps and whether they target higher predictive accuracy at the expense of lower discrimination accuracy when working with spatial GAMs. Our results suggest that additional monitoring datasets that were previously excluded can be employed by statistical habitat models, thereby enabling generation of distribution maps and suitability indices for a wider range of species, life stage and season combinations." @default.
- W3025842004 created "2020-05-21" @default.
- W3025842004 creator A5028348543 @default.
- W3025842004 creator A5061764631 @default.
- W3025842004 creator A5077491495 @default.
- W3025842004 creator A5083031339 @default.
- W3025842004 date "2020-09-01" @default.
- W3025842004 modified "2023-10-06" @default.
- W3025842004 title "Making the most of available monitoring data: A grid-summarization method to allow for the combined use of monitoring data collected at random and fixed sampling stations" @default.
- W3025842004 cites W1790462712 @default.
- W3025842004 cites W1851368146 @default.
- W3025842004 cites W1925444443 @default.
- W3025842004 cites W1952312374 @default.
- W3025842004 cites W1965519723 @default.
- W3025842004 cites W1969102921 @default.
- W3025842004 cites W1969164347 @default.
- W3025842004 cites W1972371657 @default.
- W3025842004 cites W1975128847 @default.
- W3025842004 cites W1977773466 @default.
- W3025842004 cites W1985475331 @default.
- W3025842004 cites W1991275505 @default.
- W3025842004 cites W1994330237 @default.
- W3025842004 cites W1998025025 @default.
- W3025842004 cites W1998170828 @default.
- W3025842004 cites W1999227160 @default.
- W3025842004 cites W2006055706 @default.
- W3025842004 cites W2015747499 @default.
- W3025842004 cites W2033371260 @default.
- W3025842004 cites W2040815881 @default.
- W3025842004 cites W2051066668 @default.
- W3025842004 cites W2052990613 @default.
- W3025842004 cites W2055292590 @default.
- W3025842004 cites W2057851269 @default.
- W3025842004 cites W2060298585 @default.
- W3025842004 cites W2072065268 @default.
- W3025842004 cites W2082061497 @default.
- W3025842004 cites W2087780857 @default.
- W3025842004 cites W2089454337 @default.
- W3025842004 cites W2093016371 @default.
- W3025842004 cites W2105419357 @default.
- W3025842004 cites W2111276790 @default.
- W3025842004 cites W2112038911 @default.
- W3025842004 cites W2112840683 @default.
- W3025842004 cites W2116422701 @default.
- W3025842004 cites W2119160928 @default.
- W3025842004 cites W2129775761 @default.
- W3025842004 cites W2130577920 @default.
- W3025842004 cites W2152277880 @default.
- W3025842004 cites W2157825442 @default.
- W3025842004 cites W2160597133 @default.
- W3025842004 cites W2167271913 @default.
- W3025842004 cites W2168213791 @default.
- W3025842004 cites W2254070559 @default.
- W3025842004 cites W2314229876 @default.
- W3025842004 cites W2314882871 @default.
- W3025842004 cites W2316150473 @default.
- W3025842004 cites W2330681382 @default.
- W3025842004 cites W2508084728 @default.
- W3025842004 cites W2539016905 @default.
- W3025842004 cites W2562169964 @default.
- W3025842004 cites W2580913194 @default.
- W3025842004 cites W2588762017 @default.
- W3025842004 cites W2609154637 @default.
- W3025842004 cites W2616348933 @default.
- W3025842004 cites W2621568028 @default.
- W3025842004 cites W2635952004 @default.
- W3025842004 cites W2655243866 @default.
- W3025842004 cites W2734519926 @default.
- W3025842004 cites W2752022248 @default.
- W3025842004 cites W2757534983 @default.
- W3025842004 cites W2771203928 @default.
- W3025842004 cites W2779644327 @default.
- W3025842004 cites W2791870666 @default.
- W3025842004 cites W2792151473 @default.
- W3025842004 cites W2800865825 @default.
- W3025842004 cites W2805630479 @default.
- W3025842004 cites W2806428442 @default.
- W3025842004 cites W2810176277 @default.
- W3025842004 cites W2891486861 @default.
- W3025842004 cites W2898184327 @default.
- W3025842004 cites W2898425070 @default.
- W3025842004 cites W2921763622 @default.
- W3025842004 cites W2922020058 @default.
- W3025842004 cites W2940910062 @default.
- W3025842004 cites W2954288824 @default.
- W3025842004 cites W2972696028 @default.
- W3025842004 cites W3011196952 @default.
- W3025842004 cites W639904810 @default.
- W3025842004 doi "https://doi.org/10.1016/j.fishres.2020.105623" @default.
- W3025842004 hasPublicationYear "2020" @default.
- W3025842004 type Work @default.
- W3025842004 sameAs 3025842004 @default.
- W3025842004 citedByCount "11" @default.
- W3025842004 countsByYear W30258420042020 @default.
- W3025842004 countsByYear W30258420042021 @default.
- W3025842004 countsByYear W30258420042022 @default.
- W3025842004 countsByYear W30258420042023 @default.
- W3025842004 crossrefType "journal-article" @default.