Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025972097> ?p ?o ?g. }
- W3025972097 endingPage "104031" @default.
- W3025972097 startingPage "104031" @default.
- W3025972097 abstract "Recent decades have witnessed a trend that soft sensing, instead of hard sensing, has been extensively applied to estimate the key performance indices under the circumstances that practical measurements are hardly to be achieved at a reasonable cost. However, due to the existence of nonlinearities and time-varying characteristics in the practical industrial processes, the conventional soft sensor models probably suffer from severe performance degradations when the original designed models are mismatched. Although many novel methodologies have been employed to alleviate this problem, each of them merely focuses on certain aspect of model features, a comprehensive framework combining these features is needed. Therefore, this study proposes an online predictive methodology based on an integration of ensemble learning based on a novel adaptive locally weighted partial least squares. Specifically, sub-models established on the respective dataset are generated by moving window model, time difference model and just-in-time learning model for the sake of different properties in processes. The effectiveness of the proposed model is validated on the practical nonlinear processes represented by a benchmark simulation model No.1 (BSM1), in wastewater treatment plants (WWTP), and a real industrial catalytic reforming process." @default.
- W3025972097 created "2020-05-21" @default.
- W3025972097 creator A5028460240 @default.
- W3025972097 creator A5028462736 @default.
- W3025972097 creator A5030911675 @default.
- W3025972097 creator A5038124106 @default.
- W3025972097 creator A5040009629 @default.
- W3025972097 creator A5067183406 @default.
- W3025972097 date "2020-08-01" @default.
- W3025972097 modified "2023-10-17" @default.
- W3025972097 title "Key performance index estimation based on ensemble locally weighted partial least squares and its application on industrial nonlinear processes" @default.
- W3025972097 cites W1776391967 @default.
- W3025972097 cites W1870365817 @default.
- W3025972097 cites W1986860571 @default.
- W3025972097 cites W1996609740 @default.
- W3025972097 cites W2058248416 @default.
- W3025972097 cites W2062789613 @default.
- W3025972097 cites W2073447193 @default.
- W3025972097 cites W2079692514 @default.
- W3025972097 cites W2092977448 @default.
- W3025972097 cites W2125419932 @default.
- W3025972097 cites W2126795580 @default.
- W3025972097 cites W2282931525 @default.
- W3025972097 cites W2316323201 @default.
- W3025972097 cites W2320749897 @default.
- W3025972097 cites W2329931337 @default.
- W3025972097 cites W2463821062 @default.
- W3025972097 cites W2572965628 @default.
- W3025972097 cites W2602750048 @default.
- W3025972097 cites W2605407782 @default.
- W3025972097 cites W2613714388 @default.
- W3025972097 cites W2734758784 @default.
- W3025972097 cites W2757109865 @default.
- W3025972097 cites W2781768266 @default.
- W3025972097 cites W2802249131 @default.
- W3025972097 cites W2804079976 @default.
- W3025972097 cites W2810347597 @default.
- W3025972097 cites W2907431658 @default.
- W3025972097 cites W2917704196 @default.
- W3025972097 cites W2933109827 @default.
- W3025972097 cites W2944261669 @default.
- W3025972097 cites W2948009788 @default.
- W3025972097 cites W2951391710 @default.
- W3025972097 cites W2964356616 @default.
- W3025972097 cites W2969547129 @default.
- W3025972097 cites W2980637166 @default.
- W3025972097 cites W3005538075 @default.
- W3025972097 doi "https://doi.org/10.1016/j.chemolab.2020.104031" @default.
- W3025972097 hasPublicationYear "2020" @default.
- W3025972097 type Work @default.
- W3025972097 sameAs 3025972097 @default.
- W3025972097 citedByCount "14" @default.
- W3025972097 countsByYear W30259720972020 @default.
- W3025972097 countsByYear W30259720972021 @default.
- W3025972097 countsByYear W30259720972022 @default.
- W3025972097 countsByYear W30259720972023 @default.
- W3025972097 crossrefType "journal-article" @default.
- W3025972097 hasAuthorship W3025972097A5028460240 @default.
- W3025972097 hasAuthorship W3025972097A5028462736 @default.
- W3025972097 hasAuthorship W3025972097A5030911675 @default.
- W3025972097 hasAuthorship W3025972097A5038124106 @default.
- W3025972097 hasAuthorship W3025972097A5040009629 @default.
- W3025972097 hasAuthorship W3025972097A5067183406 @default.
- W3025972097 hasConcept C105795698 @default.
- W3025972097 hasConcept C111919701 @default.
- W3025972097 hasConcept C115575686 @default.
- W3025972097 hasConcept C119857082 @default.
- W3025972097 hasConcept C121332964 @default.
- W3025972097 hasConcept C124101348 @default.
- W3025972097 hasConcept C126255220 @default.
- W3025972097 hasConcept C13280743 @default.
- W3025972097 hasConcept C154945302 @default.
- W3025972097 hasConcept C158622935 @default.
- W3025972097 hasConcept C185429906 @default.
- W3025972097 hasConcept C185798385 @default.
- W3025972097 hasConcept C205649164 @default.
- W3025972097 hasConcept C22354355 @default.
- W3025972097 hasConcept C26517878 @default.
- W3025972097 hasConcept C33923547 @default.
- W3025972097 hasConcept C38652104 @default.
- W3025972097 hasConcept C41008148 @default.
- W3025972097 hasConcept C45942800 @default.
- W3025972097 hasConcept C62520636 @default.
- W3025972097 hasConcept C98045186 @default.
- W3025972097 hasConcept C9936470 @default.
- W3025972097 hasConceptScore W3025972097C105795698 @default.
- W3025972097 hasConceptScore W3025972097C111919701 @default.
- W3025972097 hasConceptScore W3025972097C115575686 @default.
- W3025972097 hasConceptScore W3025972097C119857082 @default.
- W3025972097 hasConceptScore W3025972097C121332964 @default.
- W3025972097 hasConceptScore W3025972097C124101348 @default.
- W3025972097 hasConceptScore W3025972097C126255220 @default.
- W3025972097 hasConceptScore W3025972097C13280743 @default.
- W3025972097 hasConceptScore W3025972097C154945302 @default.
- W3025972097 hasConceptScore W3025972097C158622935 @default.
- W3025972097 hasConceptScore W3025972097C185429906 @default.
- W3025972097 hasConceptScore W3025972097C185798385 @default.
- W3025972097 hasConceptScore W3025972097C205649164 @default.