Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025974780> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3025974780 endingPage "1" @default.
- W3025974780 startingPage "1" @default.
- W3025974780 abstract "The problem of noninstrusive load monitoring (NILM) is usually formulated as a single-channel blind source separation task, whose successful solution enable fast and convenient load identification and energy disaggregation. When applied at test time, NILM algorithms aim to identify the operating characteristics of individual appliances from an aggregate power measurement of the entire house. Recent advances in deep learning gave rise to many methods that mostly focus on learning a direct mapping from aggregate measurement to individual appliance power. However, these methods are not only computationally expensive, but they often suffer from overfitting and do not generalize very well. In this article, we propose a novel NILM method that leverages advances in statistical learning that have not been properly applied in this domain before. The proposed method consists of three stages: first, a Bayesian nonparametric learning-based approach for appliance state extraction; second, synthetic minority oversampling technique for data augmentation and mitigating the heavy imbalance in switching events; and third, appliance-specific lightweight long short-term memory networks for status classification for each appliance. We adopt a “differential” input (the difference before and after the switching event) to reduce the complexity of network training and make the proposed method robust to multiappliance switching events. Experiments are conducted to demonstrate the effectiveness of the proposed method, achieving superior performance when compared to recent methods. An ablation study is conducted to demonstrate the effectiveness of each module of our method. Finally, we investigate the quality of generated synthetic samples." @default.
- W3025974780 created "2020-05-21" @default.
- W3025974780 creator A5005485315 @default.
- W3025974780 creator A5010849075 @default.
- W3025974780 creator A5057667244 @default.
- W3025974780 creator A5063253432 @default.
- W3025974780 creator A5079845418 @default.
- W3025974780 date "2020-01-01" @default.
- W3025974780 modified "2023-09-27" @default.
- W3025974780 title "Non-Intrusive Appliance Identification with Appliance-Specific Networks" @default.
- W3025974780 cites W1479651931 @default.
- W3025974780 cites W1982401327 @default.
- W3025974780 cites W2016897865 @default.
- W3025974780 cites W2025423356 @default.
- W3025974780 cites W2028257008 @default.
- W3025974780 cites W2043279449 @default.
- W3025974780 cites W2064675550 @default.
- W3025974780 cites W2081314233 @default.
- W3025974780 cites W2095693218 @default.
- W3025974780 cites W2097481773 @default.
- W3025974780 cites W2123910460 @default.
- W3025974780 cites W2131634249 @default.
- W3025974780 cites W2148143831 @default.
- W3025974780 cites W2151729265 @default.
- W3025974780 cites W2167866158 @default.
- W3025974780 cites W2222435693 @default.
- W3025974780 cites W2340432652 @default.
- W3025974780 cites W2342835739 @default.
- W3025974780 cites W2465358378 @default.
- W3025974780 cites W2764060181 @default.
- W3025974780 cites W2900536921 @default.
- W3025974780 cites W2912379755 @default.
- W3025974780 cites W2938316190 @default.
- W3025974780 cites W2948816168 @default.
- W3025974780 cites W2949252504 @default.
- W3025974780 cites W2952067596 @default.
- W3025974780 cites W2952248931 @default.
- W3025974780 cites W2971067036 @default.
- W3025974780 cites W2990279883 @default.
- W3025974780 doi "https://doi.org/10.1109/tia.2020.2994279" @default.
- W3025974780 hasPublicationYear "2020" @default.
- W3025974780 type Work @default.
- W3025974780 sameAs 3025974780 @default.
- W3025974780 citedByCount "6" @default.
- W3025974780 countsByYear W30259747802020 @default.
- W3025974780 countsByYear W30259747802021 @default.
- W3025974780 countsByYear W30259747802022 @default.
- W3025974780 crossrefType "journal-article" @default.
- W3025974780 hasAuthorship W3025974780A5005485315 @default.
- W3025974780 hasAuthorship W3025974780A5010849075 @default.
- W3025974780 hasAuthorship W3025974780A5057667244 @default.
- W3025974780 hasAuthorship W3025974780A5063253432 @default.
- W3025974780 hasAuthorship W3025974780A5079845418 @default.
- W3025974780 hasBestOaLocation W30259747801 @default.
- W3025974780 hasConcept C116834253 @default.
- W3025974780 hasConcept C41008148 @default.
- W3025974780 hasConcept C59822182 @default.
- W3025974780 hasConcept C86803240 @default.
- W3025974780 hasConceptScore W3025974780C116834253 @default.
- W3025974780 hasConceptScore W3025974780C41008148 @default.
- W3025974780 hasConceptScore W3025974780C59822182 @default.
- W3025974780 hasConceptScore W3025974780C86803240 @default.
- W3025974780 hasLocation W30259747801 @default.
- W3025974780 hasLocation W30259747802 @default.
- W3025974780 hasOpenAccess W3025974780 @default.
- W3025974780 hasPrimaryLocation W30259747801 @default.
- W3025974780 hasRelatedWork W2093578348 @default.
- W3025974780 hasRelatedWork W2350741829 @default.
- W3025974780 hasRelatedWork W2358668433 @default.
- W3025974780 hasRelatedWork W2363804782 @default.
- W3025974780 hasRelatedWork W2376932109 @default.
- W3025974780 hasRelatedWork W2382290278 @default.
- W3025974780 hasRelatedWork W2390279801 @default.
- W3025974780 hasRelatedWork W2748952813 @default.
- W3025974780 hasRelatedWork W2766271392 @default.
- W3025974780 hasRelatedWork W2899084033 @default.
- W3025974780 isParatext "false" @default.
- W3025974780 isRetracted "false" @default.
- W3025974780 magId "3025974780" @default.
- W3025974780 workType "article" @default.