Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025975432> ?p ?o ?g. }
- W3025975432 endingPage "327" @default.
- W3025975432 startingPage "305" @default.
- W3025975432 abstract "Medicinal plants are gaining attention in the pharmaceutical industry due to having less harmful effects reactions and cheaper than modern medicine. Based on these facts, many researchers have shown considerable interest in the research of automatic medicinal plants recognition. There are various opportunities for advancement in producing a robust classifier that has the ability to classify medicinal plants accurately in real-time. In this paper, various effective and reliable machine learning algorithms for plant classifications using leaf images that have been used in recent years are reviewed. The review includes the image processing methods used to detect leaf and extract important leaf features for some machine learning classifiers. These machine learning classifiers are categorised according to their performance when classifying leaf images based on typical plant features, namely shape, vein, texture and a combination of multiple features. The leaf databases that are publicly available for automatic plants recognition are reviewed as well and we conclude with a discussion of prominent ongoing research and opportunities for enhancement in this area." @default.
- W3025975432 created "2020-05-21" @default.
- W3025975432 creator A5005531103 @default.
- W3025975432 creator A5020679902 @default.
- W3025975432 creator A5028022803 @default.
- W3025975432 creator A5045735100 @default.
- W3025975432 date "2020-05-12" @default.
- W3025975432 modified "2023-10-04" @default.
- W3025975432 title "Machine learning in medicinal plants recognition: a review" @default.
- W3025975432 cites W1181899764 @default.
- W3025975432 cites W1533320424 @default.
- W3025975432 cites W1570646234 @default.
- W3025975432 cites W1584753842 @default.
- W3025975432 cites W1705245392 @default.
- W3025975432 cites W1963268360 @default.
- W3025975432 cites W1964940342 @default.
- W3025975432 cites W1968896562 @default.
- W3025975432 cites W1972847581 @default.
- W3025975432 cites W1976814955 @default.
- W3025975432 cites W1977177161 @default.
- W3025975432 cites W1989637899 @default.
- W3025975432 cites W1990492213 @default.
- W3025975432 cites W1995207816 @default.
- W3025975432 cites W2003400461 @default.
- W3025975432 cites W2004005279 @default.
- W3025975432 cites W2004707354 @default.
- W3025975432 cites W2008234533 @default.
- W3025975432 cites W2012093028 @default.
- W3025975432 cites W2052987404 @default.
- W3025975432 cites W2064653431 @default.
- W3025975432 cites W2066668515 @default.
- W3025975432 cites W2068231508 @default.
- W3025975432 cites W2070142590 @default.
- W3025975432 cites W2070869294 @default.
- W3025975432 cites W2078165051 @default.
- W3025975432 cites W2081072138 @default.
- W3025975432 cites W2081882777 @default.
- W3025975432 cites W2086377778 @default.
- W3025975432 cites W2086823747 @default.
- W3025975432 cites W2089322632 @default.
- W3025975432 cites W2090922444 @default.
- W3025975432 cites W2096038174 @default.
- W3025975432 cites W2097828142 @default.
- W3025975432 cites W2116722724 @default.
- W3025975432 cites W2122496402 @default.
- W3025975432 cites W2130695501 @default.
- W3025975432 cites W2137468573 @default.
- W3025975432 cites W2145320441 @default.
- W3025975432 cites W2147262067 @default.
- W3025975432 cites W2154683974 @default.
- W3025975432 cites W2159509274 @default.
- W3025975432 cites W2213241010 @default.
- W3025975432 cites W2317769561 @default.
- W3025975432 cites W2324332746 @default.
- W3025975432 cites W2399221785 @default.
- W3025975432 cites W2470368200 @default.
- W3025975432 cites W2470803522 @default.
- W3025975432 cites W2507360217 @default.
- W3025975432 cites W2538694901 @default.
- W3025975432 cites W2548258044 @default.
- W3025975432 cites W2557527928 @default.
- W3025975432 cites W2568155635 @default.
- W3025975432 cites W2579348194 @default.
- W3025975432 cites W2596146730 @default.
- W3025975432 cites W2599068109 @default.
- W3025975432 cites W2602132298 @default.
- W3025975432 cites W2611345135 @default.
- W3025975432 cites W2618747515 @default.
- W3025975432 cites W2621319211 @default.
- W3025975432 cites W2746033354 @default.
- W3025975432 cites W2759519500 @default.
- W3025975432 cites W2765783050 @default.
- W3025975432 cites W2783847648 @default.
- W3025975432 cites W2794071810 @default.
- W3025975432 cites W2795866616 @default.
- W3025975432 cites W2805634975 @default.
- W3025975432 cites W2811076186 @default.
- W3025975432 cites W2886555888 @default.
- W3025975432 cites W2893880908 @default.
- W3025975432 cites W2899966900 @default.
- W3025975432 cites W2951588658 @default.
- W3025975432 cites W2955950638 @default.
- W3025975432 cites W2967871601 @default.
- W3025975432 cites W297895949 @default.
- W3025975432 cites W4210997624 @default.
- W3025975432 cites W4367590675 @default.
- W3025975432 cites W591378697 @default.
- W3025975432 cites W599926486 @default.
- W3025975432 cites W636712700 @default.
- W3025975432 cites W3022814278 @default.
- W3025975432 doi "https://doi.org/10.1007/s10462-020-09847-0" @default.
- W3025975432 hasPublicationYear "2020" @default.
- W3025975432 type Work @default.
- W3025975432 sameAs 3025975432 @default.
- W3025975432 citedByCount "26" @default.
- W3025975432 countsByYear W30259754322021 @default.
- W3025975432 countsByYear W30259754322022 @default.
- W3025975432 countsByYear W30259754322023 @default.