Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025989852> ?p ?o ?g. }
- W3025989852 abstract "Empirical evidence demonstrates many benefits of Big data analytics (BDA) in supply chain management (SCM), including reduced operational costs, improved SC agility, and increased customer satisfaction. However, reports show that the BDA adoption of companies in SCM is relatively low, and the main reason for this is lack of understanding of how it can be implemented to address specific business problems. Therefore, the aim of this thesis is to explore new applications of BDA to support the data-driven decision making in SCM. Particularly, the thesis addresses four research objectives: (1) to conduct a literature review that summarises what and how BDA has been applied within the SCM context. As a result, several research gaps are revealed, which leads to future research directions; (2) to develop a comprehensible, data-driven demand prediction of remanufactured products. Validated with a real-world Amazon dataset, the result shows that the proposed approach can produce a highly accurate and robust prediction of product demand, as well as providing insights into the non-linear effect of online market factors on demand; (3) to develop a prescriptive price optimisation model by extending the proposed demand prediction with a mixed integer linear programme to optimise promotional pricing decisions. The result shows that the obtained optimal promotional price solution could increase both sales and revenue; (4) Finally, the thesis proposes a data-driven prescriptive approach for large-scale optimisation problems, based on the hybrid approach combining association rule mining and complex network theory. For validation, the proposed model is applied to optimise the large-scale dry port location problems in Mainland China in the context of the Belt and Road Initiatives (BRI). The dry port solution obtained from the model is realistic and applicable as it accurately pinpoints key locations in the real BRI development plans. The contribution of this thesis is multifaceted. Theoretically, the thesis serves as a good starting point for researchers to build up the foundation of BDA, which enables to develop a machine learning-based approach to tackle the established research problems. Practically, the thesis facilitates the data-driven decision making across industries such as online marketing strategy development for remanufactured products, daily promotional planning for retailers, and logistics network design for dry port planners." @default.
- W3025989852 created "2020-05-21" @default.
- W3025989852 creator A5075381376 @default.
- W3025989852 date "2019-09-01" @default.
- W3025989852 modified "2023-09-23" @default.
- W3025989852 title "Exploring applications of big data analytics in supply chain management" @default.
- W3025989852 cites W1520812622 @default.
- W3025989852 cites W1572786359 @default.
- W3025989852 cites W1873039451 @default.
- W3025989852 cites W1965528140 @default.
- W3025989852 cites W1975308300 @default.
- W3025989852 cites W1977382236 @default.
- W3025989852 cites W1983119716 @default.
- W3025989852 cites W1988166728 @default.
- W3025989852 cites W1989396401 @default.
- W3025989852 cites W1991842457 @default.
- W3025989852 cites W1994703496 @default.
- W3025989852 cites W1997290651 @default.
- W3025989852 cites W1997752435 @default.
- W3025989852 cites W1998525833 @default.
- W3025989852 cites W2002725950 @default.
- W3025989852 cites W2004512637 @default.
- W3025989852 cites W2008502375 @default.
- W3025989852 cites W2011659350 @default.
- W3025989852 cites W2020833085 @default.
- W3025989852 cites W2029936389 @default.
- W3025989852 cites W2030723486 @default.
- W3025989852 cites W2047940964 @default.
- W3025989852 cites W2050443272 @default.
- W3025989852 cites W2060437593 @default.
- W3025989852 cites W2073345995 @default.
- W3025989852 cites W2075252618 @default.
- W3025989852 cites W2079134987 @default.
- W3025989852 cites W2091064058 @default.
- W3025989852 cites W2098998642 @default.
- W3025989852 cites W2110824457 @default.
- W3025989852 cites W2121507590 @default.
- W3025989852 cites W2125847307 @default.
- W3025989852 cites W2138449677 @default.
- W3025989852 cites W2139086914 @default.
- W3025989852 cites W2142002871 @default.
- W3025989852 cites W2156109180 @default.
- W3025989852 cites W2159588611 @default.
- W3025989852 cites W2173721748 @default.
- W3025989852 cites W2175206234 @default.
- W3025989852 cites W2261525379 @default.
- W3025989852 cites W2295307183 @default.
- W3025989852 cites W2308777257 @default.
- W3025989852 cites W2314341432 @default.
- W3025989852 cites W2469165122 @default.
- W3025989852 cites W2486296320 @default.
- W3025989852 cites W2508962850 @default.
- W3025989852 cites W2552660223 @default.
- W3025989852 cites W264248106 @default.
- W3025989852 cites W2726090486 @default.
- W3025989852 cites W2736376853 @default.
- W3025989852 cites W2738004995 @default.
- W3025989852 cites W2758714032 @default.
- W3025989852 cites W2774008574 @default.
- W3025989852 cites W2780644310 @default.
- W3025989852 cites W2792250890 @default.
- W3025989852 cites W2792328488 @default.
- W3025989852 cites W2797253701 @default.
- W3025989852 cites W2804310261 @default.
- W3025989852 cites W2888763990 @default.
- W3025989852 cites W2911576302 @default.
- W3025989852 cites W2911964244 @default.
- W3025989852 cites W2912985423 @default.
- W3025989852 cites W2947788863 @default.
- W3025989852 cites W2960813728 @default.
- W3025989852 cites W2975247854 @default.
- W3025989852 cites W3123091093 @default.
- W3025989852 cites W3123967386 @default.
- W3025989852 cites W3125442684 @default.
- W3025989852 cites W841229804 @default.
- W3025989852 hasPublicationYear "2019" @default.
- W3025989852 type Work @default.
- W3025989852 sameAs 3025989852 @default.
- W3025989852 citedByCount "0" @default.
- W3025989852 crossrefType "dissertation" @default.
- W3025989852 hasAuthorship W3025989852A5075381376 @default.
- W3025989852 hasConcept C108713360 @default.
- W3025989852 hasConcept C121955636 @default.
- W3025989852 hasConcept C124101348 @default.
- W3025989852 hasConcept C127413603 @default.
- W3025989852 hasConcept C144133560 @default.
- W3025989852 hasConcept C151730666 @default.
- W3025989852 hasConcept C162853370 @default.
- W3025989852 hasConcept C195487862 @default.
- W3025989852 hasConcept C2522767166 @default.
- W3025989852 hasConcept C2524010 @default.
- W3025989852 hasConcept C2779343474 @default.
- W3025989852 hasConcept C2781386248 @default.
- W3025989852 hasConcept C33923547 @default.
- W3025989852 hasConcept C41008148 @default.
- W3025989852 hasConcept C42475967 @default.
- W3025989852 hasConcept C44104985 @default.
- W3025989852 hasConcept C75684735 @default.
- W3025989852 hasConcept C79158427 @default.
- W3025989852 hasConcept C86803240 @default.