Matches in SemOpenAlex for { <https://semopenalex.org/work/W3025996913> ?p ?o ?g. }
- W3025996913 endingPage "1670" @default.
- W3025996913 startingPage "1648" @default.
- W3025996913 abstract "In this study, poly(ε-caprolactone) (PCL) has been blended with a more hydrophilic poly(ethylene glycol) (PEG) and with a biocompatible block-co-polymer: poly(L-lactide-co-ε-caprolactone-co-glycolide) (PLCG) in order to improve hydrophilicity, biocompatibility and biodegradability of PCL. PCL and the blend solutions were subjected to electrospinning to produce nanofiber scaffolds by the addition of only 1 wt% of PEG and PLCG either singly or in combination in PCL to retain the mechanical properties of the scaffolds. PCL-PEG-PLCG ternary and two binary (PCL-PEG and PCL-PLCG) blend nanofiber scaffolds have been prepared for comparison. The resulting nanofibers showed a smooth and flaw-free surface and the diameter of the nanofibers displayed a normal distribution. The PCL-PEG nanofiber scaffold showed improved hydrophilicity [water contact angle (WCA) ∼84°] over pristine PCL (WCA ∼127°); while PCL-PLCG and PCL-PEG-PLCG scaffolds exhibited absolute wetting by water, likely due to high porosity. In vitro biocompatibility studies using gingival mesenchymal stem cells (gMSCs) suggested that, both the PCL and the blend scaffolds were biocompatible supporting cell-viability and growth of gMSCs following their seeding on these scaffolds. Biodegradation studies in phosphate buffer solution showed that the addition of PEG and PLCG in PCL increased the weight loss of scaffolds with time, indicating higher extent of biodegradation in the blend scaffolds and the weight loss followed the power law curve with time." @default.
- W3025996913 created "2020-05-21" @default.
- W3025996913 creator A5006436252 @default.
- W3025996913 creator A5021257893 @default.
- W3025996913 creator A5035382399 @default.
- W3025996913 creator A5048843607 @default.
- W3025996913 creator A5083928981 @default.
- W3025996913 date "2020-06-07" @default.
- W3025996913 modified "2023-10-07" @default.
- W3025996913 title "Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering" @default.
- W3025996913 cites W1594648160 @default.
- W3025996913 cites W1782812206 @default.
- W3025996913 cites W1965518820 @default.
- W3025996913 cites W1972305817 @default.
- W3025996913 cites W1974652269 @default.
- W3025996913 cites W1976860485 @default.
- W3025996913 cites W1980101557 @default.
- W3025996913 cites W1980328470 @default.
- W3025996913 cites W1985174506 @default.
- W3025996913 cites W1986671443 @default.
- W3025996913 cites W1989823502 @default.
- W3025996913 cites W1990073207 @default.
- W3025996913 cites W1991370659 @default.
- W3025996913 cites W1993895799 @default.
- W3025996913 cites W1995149223 @default.
- W3025996913 cites W2002569622 @default.
- W3025996913 cites W2011503551 @default.
- W3025996913 cites W2015367871 @default.
- W3025996913 cites W2020699551 @default.
- W3025996913 cites W2022380798 @default.
- W3025996913 cites W2022554508 @default.
- W3025996913 cites W2029317647 @default.
- W3025996913 cites W2033912819 @default.
- W3025996913 cites W2039397503 @default.
- W3025996913 cites W2041016801 @default.
- W3025996913 cites W2043799833 @default.
- W3025996913 cites W2052647448 @default.
- W3025996913 cites W2053641621 @default.
- W3025996913 cites W2056104115 @default.
- W3025996913 cites W2056420253 @default.
- W3025996913 cites W2058500387 @default.
- W3025996913 cites W2066620625 @default.
- W3025996913 cites W2072472555 @default.
- W3025996913 cites W2073492808 @default.
- W3025996913 cites W2073627808 @default.
- W3025996913 cites W2078237208 @default.
- W3025996913 cites W2091024241 @default.
- W3025996913 cites W2093540514 @default.
- W3025996913 cites W2096214578 @default.
- W3025996913 cites W2097220621 @default.
- W3025996913 cites W2099387542 @default.
- W3025996913 cites W2099821568 @default.
- W3025996913 cites W2130804625 @default.
- W3025996913 cites W2134208433 @default.
- W3025996913 cites W2150132676 @default.
- W3025996913 cites W2150728740 @default.
- W3025996913 cites W2156026112 @default.
- W3025996913 cites W2156862232 @default.
- W3025996913 cites W2171428511 @default.
- W3025996913 cites W2176830915 @default.
- W3025996913 cites W2180188037 @default.
- W3025996913 cites W2193245378 @default.
- W3025996913 cites W2221080169 @default.
- W3025996913 cites W2275458638 @default.
- W3025996913 cites W2316078127 @default.
- W3025996913 cites W2329125284 @default.
- W3025996913 cites W2331695357 @default.
- W3025996913 cites W2339361368 @default.
- W3025996913 cites W2346942087 @default.
- W3025996913 cites W2397196204 @default.
- W3025996913 cites W2419334137 @default.
- W3025996913 cites W2482599381 @default.
- W3025996913 cites W2487823570 @default.
- W3025996913 cites W2520622343 @default.
- W3025996913 cites W2556421773 @default.
- W3025996913 cites W2560752096 @default.
- W3025996913 cites W2575831459 @default.
- W3025996913 cites W2594339411 @default.
- W3025996913 cites W2598247129 @default.
- W3025996913 cites W2737873827 @default.
- W3025996913 cites W2742306417 @default.
- W3025996913 cites W2762305641 @default.
- W3025996913 cites W2788560851 @default.
- W3025996913 cites W2792761071 @default.
- W3025996913 cites W2799949581 @default.
- W3025996913 cites W2800117019 @default.
- W3025996913 cites W2800611046 @default.
- W3025996913 cites W2901288204 @default.
- W3025996913 cites W290379330 @default.
- W3025996913 cites W2941305547 @default.
- W3025996913 cites W2951113216 @default.
- W3025996913 cites W2967257288 @default.
- W3025996913 cites W4231316006 @default.
- W3025996913 doi "https://doi.org/10.1080/09205063.2020.1769799" @default.
- W3025996913 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32402230" @default.
- W3025996913 hasPublicationYear "2020" @default.
- W3025996913 type Work @default.
- W3025996913 sameAs 3025996913 @default.