Matches in SemOpenAlex for { <https://semopenalex.org/work/W3026108168> ?p ?o ?g. }
- W3026108168 abstract "We recast the forward pass of a multilayered convolutional neural network (CNN) as the solution to the problem of sparse least squares migration (LSM). The CNN filters and feature maps are shown to be analogous, but not equivalent, to the migration Green's functions and the quasi-reflectivity distribution, respectively. This provides a physical interpretation of the filters and feature maps in deep CNN in terms of the operators for seismic imaging. Motivated by the connection between sparse LSM and CNN, we propose the neural network version of sparse LSM. Unlike the standard LSM method that finds the optimal reflectivity image, neural network LSM (NNLSM) finds both the optimal quasi-reflectivity image and the quasi-migration Green's functions. These quasi-migration-Green's functions are also denoted as the convolutional filters in a CNN and are similar to migration Green's functions. The advantage of NNLSM over standard LSM is that its computational cost is significantly less and it can be used for denoising coherent and incoherent noise in migration images. Its disadvantage is that the NNLSM quasi-reflectivity image is only an approximation to the actual reflectivity distribution. However, the quasi-reflectivity image can be used as a superresolution attribute image for high-resolution delineation of geologic bodies." @default.
- W3026108168 created "2020-05-29" @default.
- W3026108168 creator A5004143557 @default.
- W3026108168 creator A5026666098 @default.
- W3026108168 creator A5085971155 @default.
- W3026108168 date "2019-04-19" @default.
- W3026108168 modified "2023-09-23" @default.
- W3026108168 title "Deep Convolutional Neural Network and Sparse Least Squares Migration" @default.
- W3026108168 cites W1623010351 @default.
- W3026108168 cites W1946953458 @default.
- W3026108168 cites W2019489430 @default.
- W3026108168 cites W2019699602 @default.
- W3026108168 cites W2065442259 @default.
- W3026108168 cites W2065538232 @default.
- W3026108168 cites W2070329202 @default.
- W3026108168 cites W2075567728 @default.
- W3026108168 cites W2080383849 @default.
- W3026108168 cites W2087054292 @default.
- W3026108168 cites W2100556411 @default.
- W3026108168 cites W2105304793 @default.
- W3026108168 cites W2116360511 @default.
- W3026108168 cites W2119818928 @default.
- W3026108168 cites W2140130644 @default.
- W3026108168 cites W2145636454 @default.
- W3026108168 cites W2145889472 @default.
- W3026108168 cites W2162769324 @default.
- W3026108168 cites W2162834247 @default.
- W3026108168 cites W2169151090 @default.
- W3026108168 cites W2186845332 @default.
- W3026108168 cites W2194775991 @default.
- W3026108168 cites W2504480743 @default.
- W3026108168 cites W2591144099 @default.
- W3026108168 cites W2592517375 @default.
- W3026108168 cites W2593069605 @default.
- W3026108168 cites W2619244698 @default.
- W3026108168 cites W2740670612 @default.
- W3026108168 cites W2752693045 @default.
- W3026108168 cites W2771203173 @default.
- W3026108168 cites W2776585113 @default.
- W3026108168 cites W2781854221 @default.
- W3026108168 cites W2785000966 @default.
- W3026108168 cites W2785795994 @default.
- W3026108168 cites W2808760859 @default.
- W3026108168 cites W2810812775 @default.
- W3026108168 cites W2886848602 @default.
- W3026108168 cites W2890128787 @default.
- W3026108168 cites W2890883963 @default.
- W3026108168 cites W2891749414 @default.
- W3026108168 cites W2894410771 @default.
- W3026108168 cites W2900900118 @default.
- W3026108168 cites W2904228837 @default.
- W3026108168 cites W2909043851 @default.
- W3026108168 cites W2914825281 @default.
- W3026108168 cites W2919115771 @default.
- W3026108168 cites W2925353284 @default.
- W3026108168 cites W2939587785 @default.
- W3026108168 cites W2947026003 @default.
- W3026108168 cites W2950798207 @default.
- W3026108168 cites W2958537367 @default.
- W3026108168 cites W2964255494 @default.
- W3026108168 cites W2967122425 @default.
- W3026108168 cites W2970419158 @default.
- W3026108168 cites W2979419929 @default.
- W3026108168 cites W2983807332 @default.
- W3026108168 cites W2985057205 @default.
- W3026108168 cites W2991580101 @default.
- W3026108168 cites W3004936775 @default.
- W3026108168 cites W3011523529 @default.
- W3026108168 cites W3023884106 @default.
- W3026108168 doi "https://doi.org/10.1190/geo-2019-0412.1" @default.
- W3026108168 hasPublicationYear "2019" @default.
- W3026108168 type Work @default.
- W3026108168 sameAs 3026108168 @default.
- W3026108168 citedByCount "0" @default.
- W3026108168 crossrefType "posted-content" @default.
- W3026108168 hasAuthorship W3026108168A5004143557 @default.
- W3026108168 hasAuthorship W3026108168A5026666098 @default.
- W3026108168 hasAuthorship W3026108168A5085971155 @default.
- W3026108168 hasBestOaLocation W30261081681 @default.
- W3026108168 hasConcept C108597893 @default.
- W3026108168 hasConcept C11413529 @default.
- W3026108168 hasConcept C115961682 @default.
- W3026108168 hasConcept C120665830 @default.
- W3026108168 hasConcept C121332964 @default.
- W3026108168 hasConcept C138885662 @default.
- W3026108168 hasConcept C153180895 @default.
- W3026108168 hasConcept C154945302 @default.
- W3026108168 hasConcept C163294075 @default.
- W3026108168 hasConcept C2776401178 @default.
- W3026108168 hasConcept C41008148 @default.
- W3026108168 hasConcept C41895202 @default.
- W3026108168 hasConcept C81363708 @default.
- W3026108168 hasConceptScore W3026108168C108597893 @default.
- W3026108168 hasConceptScore W3026108168C11413529 @default.
- W3026108168 hasConceptScore W3026108168C115961682 @default.
- W3026108168 hasConceptScore W3026108168C120665830 @default.
- W3026108168 hasConceptScore W3026108168C121332964 @default.
- W3026108168 hasConceptScore W3026108168C138885662 @default.
- W3026108168 hasConceptScore W3026108168C153180895 @default.
- W3026108168 hasConceptScore W3026108168C154945302 @default.